颜色或色彩是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应。人对颜色的感觉不仅仅由光的物理性质所决定,還包含心理等許多因素,比如人类对颜 色的感觉往往受到周围颜色的影响。有时人们也将物质产生不同颜色的物理特性直接称为颜色。 -- + 1.1 单色和混合色 + 1.2 颜色与波动方程 * 2 颜色的感受 + 2.1 颜色的心理作用 + 2.2 亮度的效果 -- + 2.4 光源的影响 + 2.5 动物对颜色的感受 * 3 色彩模型 + 3.1 三元色色彩空间 * 4 颜色的复制 + 4.1 色 -- + 5.1 结构色彩 + 5.2 颜色的意义 o 5.2.1 政治含义 -- 電磁波的波長和强度可以有很大的區别,在人可以感受的波長範圍内(约312.30纳米至745.40纳米),它被称为可見光,有时也被简称为光。假如我 们将一个光源各个波长的强度列在一起,我们就可以获得这个光源的光谱。一个物体的光谱决定这个物体的光学特性,包括它的颜色。不同的光谱可以被人接收为 同一个颜色。虽然我们可以将一个颜色定义为所有这些光谱的总和,但是不同的动物所看到的颜色是不同的,不同的人所感受到的颜色也是不同的,因此这个定义 是相当主观的。 -- 一个虹所表现的每个颜色只包含一个波长的光。我们称这样的颜色为单色的。虹的光谱实际上是连续的,但一般來說,人们将它分为七种颜色:红、橙、黄、绿、 青、蓝、紫;每个人的分法总是稍稍不同。单色光的强度也会影响人对一个波长的光所感受的颜色,比如暗的橙黄被感受为褐色,而暗的黄绿被感受为橄榄绿,等 等。 -- 大多数光源的光谱不是单色的,它们的光是由不同强度和波长的光混合组成的。人眼将许多这样的混合光的颜色与单色光源的光的颜色看成是同样。比如上面表格 中的橙色,实际上就不是单色的600纳米的光,实际上它是由红色和绿色的光混合组成的(显示器无法产生单色的橙色)。出于眼睛的生理原理,我们无法区分 这两种光的颜色。 也有许多颜色是不可能是单色的,因为没有这样的单色的颜色。黑色、灰色和白色比如就是这样的颜色,粉红色或绛紫色也是这样的颜色。 [编辑] 颜色与波动方程 波动方程是用来描写光的方程,因此通过解波动方程我们应该可以得到颜色的信息。在真空中光的波动方程如下: -- 但实际上要描写一组光谱到底会产生什么颜色,我们还得理解视网膜的生理功能才行。 [编辑] 颜色的感受 -- 尽管亚里士多德就已经讨论过光和颜色之间的关系,但真正阐明两者关系的是牛頓。歌德也曾经研究过颜色的成因。托马斯·杨在1801年第一次提出三元色的 理论,后来亥姆霍兹将它完善了。1960年代人们发现了人眼内部感受颜色的色素,从而确定了这个理论的正确性。 人眼中的锥状细胞和棒状细胞都能感受颜色,一般人眼中有三种不同的锥状细胞:第一种主要感受红色,它的最敏感点在565纳米左右;第二种主要感受绿色, 它的最敏感点在535纳米左右;第三种主要感受蓝色,其最敏感点在420纳米左右^[1]^[2]。杆状细胞只有一种,它的最敏感的颜色波长在蓝色和绿 色之间。 -- 因为每种细胞也对其他的波长有反映,因此并非所有的光谱都能被区分。比如绿光不仅可以被绿锥状细胞接受,其他锥状细胞也可以产生一定强度的信号,所有这 些信号的组合就是人眼能够区分的颜色的总和。 如我们的眼睛长时间看一种颜色的话,我们把目光转开就会在别的地方看到这种颜色的补色。这被称作颜色的互补原理,简单说来,当某个细胞受到某种颜色的光 刺激时,它同时会释放出两种信号:刺激黄色,并同时拟制黄色的补色藍色。 -- 人眼一共约能区分一千万种颜色,不过这只是一个估计,因为每个人眼的构造不同,每个人看到的颜色也少许不同,因此对颜色的区分是相当主观的。假如一个人 的一种或多种锥状细胞不能正常对入射的光反映,那么这个人能够区别的颜色就比较少,这样的人被称为色弱。有时这也被称为色盲,但实际上这个称呼并不正确 ,因为真正只能区分黑白的人是非常少的。 [编辑] 颜色的心理作用 不同的颜色可以产生不同的心理作用。从细节上来说这些感受每个人都各不相同,但总的来说即使是来自不同文化的人也往往有同样的感受。比如红色使人心情激 动,蓝色使人安静。对艺术家、建筑师、服装设计师和广告制作者等来说颜色的心理作用是非常重要的。 除此之外人对颜色的感受还有许多特别的效应。一个有趣的现象是假如一个画家在绘画时只使用少数几种颜色,我们的眼睛会试图将灰色或其他中立的颜色看成是 缺乏的颜色。假如一幅画中只有红黄黑和白色,那么我们就会把黄和黑的混合色看成一种绿色,把红和黑的混合色看成一种紫色,而灰色会显得有点蓝。 -- 同一种颜色在不同的亮度中会产生不同的颜色感。这个现象的原因是我们的眼睛中除了有锥状细胞外还有可以感光的杆状细胞。杆状细胞虽然一般被认为只能分辨 黑白,但它们对不同的颜色的灵敏度是略微不同的,因此当光暗下来的时候,杆状细胞的感光特性就越来越重要了,它可以改变我们对颜色的感觉。 -- 不同的文化对颜色的定义有时会少许不一样。比如在中国文化中,青色被看做是蓝色的一种。 有一种理论认为最基本的颜色比如红色、黄色、绿色、蓝色等应该是在所有的文化中都一致万能的。这个理论从进化论的角度来论证人对基本颜色的感受应该是一 致的。 -- 人在看颜色时总是试图补偿光源本身的颜色。因此我们在不同的光源下看到的同一种颜色实际上是不同的。 [编辑] 动物对颜色的感受 不同的动物感受颜色的细胞各不相同。有些动物有更多的感受颜色的细胞种类,比如鸟,有些动物感受颜色的细胞的种类比人少,比如大多数其它哺乳动物。有些 动物可以感受到人看不见的颜色,比如蜜蜂可以感受紫外线。 -- CIE 1931 色彩空间色品图。外侧曲线边界是光谱(或单色光)轨迹,标注了纳米波长。注意所描述的颜色依赖于你看到这个图象所在的设备的色彩空间,所以特定位置的颜 色、特别是单色光的颜色可能不是精确的表示。 色彩模型是一种用来将颜色表示为一组(一般三个或四个)数字的抽象的数学模型。这样所组成的色彩的集合被称为色彩空间。在这里我们仅仅描写人的色彩模型 。 -- 的是黑色。离原点越远,光的强度就越强。白色在这个空间中没有固定的点,按照色温以及周围光的不同我们可能将这个图中不同的点看做白色。人可以感受到的 颜色在这个图中是一个底部是马蹄形的锥体。理论上来说这个锥体没有止点,但过于强烈的光会损坏人的眼睛。在光的强度低的情况下,人对颜色的感受会发生变 化,但总的来说,人对右图中黑线所描绘的部分是敏感的。 精确地说,在这个图中不存在棕色或灰色这样的颜色,这些颜色实际上是比周围颜色暗的橙色和白色。这一点我们很容易证明:我们在看一个投到一块白布的投影 机的图象时我们会看到白布上投的黑字,但实际上这些黑字的颜色与白布本来还没有被投影时的颜色是一样的。投影后这些黑字周围的白布被照亮了,因此我们感 觉到它们比较黑了。 从右面的图中我们还可以看到,人无法看到纯的红色、绿色或蓝色,这是因为我们的锥状细胞对其他颜色也起反应。在我们看纯蓝色时,我们的红色和绿色的锥状 细胞也产生信号,就好像在蓝色中还夹杂着红色和绿色一样。 [编辑] 颜色的复制 不同的光谱可以在人眼中产生同样的颜色感,比如日光灯的白光是由几个相当窄的光谱线构成的,而太阳光则是由连续的光谱构成的。就其光而言,人眼无法区分 两者。只有当它们反射在不同颜色的物体上时,我们才看得出来一个是日光灯的光,一个是太阳光。 在大多数情况下人能看得出的颜色可以由元色搭配而成。照片、印刷、电视等就使用这种方式来体现颜色的。 尽管如此搭配出来的颜色往往与纯的单色不完全相同,尤其在可见光谱的中部搭配的颜色只能非常地接近单色光,但无法完全达到它的效果。比如绿光(530纳 米)和蓝光(460纳米)搭配在一起可以产生青光。但这个青光总使人有不十分纯的感觉。这是因为人的红色锥状细胞同时也可以感受到绿色和蓝色,它们对搭 配的颜色的反映比对纯的青色(485纳米)的反映要强一些,因此我们会感到搭配的颜色有点“红”,有点不纯。 此外一般在技术上使用的元色本身也都不纯,因此一般来说它们无法完全地表现纯的单色光。不过自然界中很少有真正的纯的单色光,因此一般来说由元色组成的 颜色可以很好地反映原来的颜色。一个技术系统能够产生的颜色的总和被称为色域。 在通过照相机或扫描仪录取颜色的时候也会产生误差。一般这些仪器中的感光元件的感光特性与人眼的感光特性相差甚远。因此在特别的光照下这些仪器所产生的 颜色可能会与人眼所感受到的相差很大。 与人眼的颜色感受不同的动物(比如鸟可以感受四种不同的颜色)可以区分对人来说相同的颜色,因此对它们来说适合人看的图象有时会非常不可理解。 -- 在印刷或图画中我们一般使用反射一定波长的色素。当白光照到这些色素上时,它们只反射一定的光而产生颜色的效果。 -- 理论上我们也可以使用其他颜色作为元色,但使用红、绿和蓝我们可以最大地达到人的色彩空间。遗憾的是对于红、绿和蓝色没有固定的波长的定义,因此不同的 技术仪器可能使用不同的波长从而在螢光屏上产生稍微不同的颜色。 -- 在制作计算机图像时人们往往使用另一种颜色系统。这个颜色系统使用三个分别叫做色相、饱和度和明度的系数。色相决定到底哪一种颜色被使用,饱和度决定颜 色的深浅,明度决定颜色的强烈度。 -- 假如一个物体的表面的结构使得它有间隙的吸光和反光的部分,而这些不同的光学特性的部分之间的距离与光的波长相应,那么白光照射到这个表面上时就会发生 衍射,一定颜色的光会被向一定的角度反射。这个物体的表面就会产生特别的彩虹般的闪光。孔雀的羽毛、许多蝴蝶的翅膀、贝母等就会产生这样的结构颜色。最 近一些汽车制造商也使用特别的漆来达到这样的荧光效果。 [编辑] 颜色的意义 不同的颜色有不同的意义: -- * 颜色列表 * 網頁顏色模式 -- * 色彩空間 * 孟塞尔颜色系统