/cygdrive/d/Potencial/Br/Pages-completes/acao/51-01.TXT
39-
40:um potencial de ação é uma alteração rápida na polaridade da voltagem, de negativa para positiva e de volta para negativa. esse ciclo completo dura poucos milisegundos. cada ciclo — e, portanto, cada potencial de ação, possui uma fase ascendente, uma fase descendente e, ainda, uma curva de voltagem inferior a do potencial de repouso de membrana (leia fases do potencial de ação). em fibras musculares cardíacas especializadas, como por exemplo as células do marcapasso cardíaco, uma fase de platô, com voltagem intermediária, pode preceder a fase descendente.
41-
--
54-
55:potenciais de ação são disparados quando uma despolarização inicial atinge o potencial limiar excitatório. esse potencial limiar varia, mas normalmente gira em torno de 15 milivolts acima do potencial de repouso de membrana da célula e ocorre quando a entrada de íons de sódio na célula excede a saída de íons de potássio. o influxo líquido de cargas positivas devido aos íons de sódio causa a despolarização da membrana, levando à abertura de mais canais de sódio dependentes de voltagem. por esses canais passa uma grande corrente de entrada de sódio, que causa maior despolarização, criando um ciclo de realimentação positiva (feedback positivo) que leva o potencial de membrana a um nível bastante despolarizado.
56-
--
80-
81:íons de carga positiva, propagam-se perimembranalmente e bidirecionalmente de encontro à negatividade (lei de coulomb). contudo, somente os íons que vão na direção imposta da propagação criam um potencial de ação nesta membrana, pois a membrana anterior está em período refratário; já a membrana posterior está em potencial de repouso de membrana, o que permite que nela haja o potencial de ação. se houver estímulo artificial (um eletrodo) no meio de um axônio, o potencial se propagará bidirecionalmente, pois não haverá períodos refratários impedindo-o. com a propagação, a fase passiva perde parte de seus íons, o que acarreta uma menor energia. esta perda dá-se de dois modos: choques físicos dos íons com moléculas citoplasmáticas e saída dos íons para o meio extracelular por canais de vazamento de membrana. deste modo, quanto mais distantes os canais de sódio voltagem-dependentes estiverem, mais perda de energia ocorre.
82-
--
120- período refratário
121:três situações possíveis para os canais de íon sódio voltagem-dependentes. o período refratário absoluto corresponde aos estados ativo e inativo. no período refratário relativo, alguns canais estão em repouso ativável, enquanto no potencial de repouso de membrana, todos estão.
122-
--
152-
153:baixas concentrações extracelulares de potássio promovem uma hiperpolarização no potencial de repouso de membrana da célula, pois os canais repouso de potássio estão sempre abertos. a hiperpolarização faz com que o limiar excitatório da célula aumente. portanto, serão necessários estímulos muito grandes para a geração do potencial de ação. essa alteração, no músculo cardíaco, leva a deficiência na contratilidade.
154-
155:já o aumento da concentração extracelular de potássio resulta na despolarização do potencial de membrana das células. essa despolarização abre canais de sódio voltagem dependentes, mas em quantidade insuficiente para gerar um potencial de ação. os canais de sódio então entram em período refratário aumentando assim o potencial de repouso de membrana da célula. dessa forma há uma diminuição gradativa do limiar excitatório da célula. ou seja, serão necessários estímulos cada vez menores para gerar um potencial de ação. isso pode causar danos cardíacos, neuromusculares e gastrintestinais. no coração, pode levar a fibrilação ventricular ou assistolia.
156-
/cygdrive/d/Potencial/Br/Pages-completes/acao/51-02.TXT
7-
8: 1 potencial de repouso de membrana
9- 2 potencial de ação
--
16-
17: potencial de repouso de membrana
18-
19:a diferença de potencial existente entre os dois lados da membrana de qualquer célula é normalmente negativo no interior da célula em relação ao exterior. diz-se, então, que a membrana é polarizada. a diferença de potencial entre os dois lados da membrana quando ela está em repouso é chamado potencial de repouso de membrana e possui o valor aproximado de -65 mv nos neurônios (o sinal negativo indica que o interior da célula está negativo em relação ao exterior). essa diferença de potencial é causada por vários fatores, mas os mais importantes são o transporte de íons através da membrana celular e a permeabilidade seletiva da membrana a esses íons.
20-
21:de acordo com a equação de nenrst, pode-se estabelecer o potencial de equilíbrio de cada íon, ou seja, o potencial no qual não há movimentação de determinado íon. o potássio existe em maior quantidade dentro da célula e assim possui uma força química que o impulsiona para fora e ao mesmo tempo uma força elétrica que o impulsiona para dentro. o balanço dessas forças resulta no potencial de equilíbrio do potássio, ou potencial de nerst do potássio, que é igual a -75 mv. por meio desse número, entende-se a tendência do potássio de se movimentar para fora, já que o potencial de repouso de membrana (-65 mv) é menos negativo que o potencial de nerst do potássio e, saindo da célula, o íon potássio, que é um cátion, deixa o potencial mais negativo (interior em relação ao posterior). já no caso do sódio, sua maior concentração é no exterior da célula, o que resulta numa força química que causa a entrada de íons sódio. o potencial de equilíbrio desse íon é +55 mv (muito mais positivo do que o potencial de repouso) e assim, para o que o potencial de membrana atinja esse valor, é necessária uma maior quantidade de íons positivos dentro da célula, daí a tendência desse íon de entrar na célula. o cloro, que possui um potencial de equilíbrio de -65 mv, não possui movimento significativo através da membrana celular, já que seu potencial de nerst é igual ao potencial de repouso de membrana.
22-
--
24-
25:a tendência natural dos íons de sódio e potássio é de se difundir pela membrana impelidos por seus gradientes eletroquímicos, em busca de seus respectivos potenciais de equilíbrio. o sódio entra na célula e o potássio sai. por causa dos canais de repouso de potássio, sempre abertos, a membrana plasmática é aproximadamente cem vezes mais permeável ao potássio do que ao sódio, ou seja, mais íons de potássio saem da célula do que íons de sódio entram na célula. essa predominância de saída de íons de potássio leva a uma hiperpolarização da membrana, que estabelece o valor do potencial de repouso de membrana em aproximadamente -70 mv.
26-
--
38-
39: 1. no potencial de repouso de membrana, alguns canais de repouso de potássio estão abertos, mas os canais voltagem-dependentes de sódio estão fechados. íons de potássio se difundindo de acordo com o gradiente de concentração criam um potencial negativo de membrana (interior em relação ao exterior).
40-
--
46-
47: 5. quando os canais voltagem-dependentes de potássio se abrem, se inicia um grande movimento de saída de íons de potássio, estimulado pelo gradiente de concentração de potássio e favorecido inicialmente pelo potencial positivo da membrana (interior em relação ao exterior). à medida que os íons de potássio se difundem para o meio extracelular, o movimento de cátions causa a reversão do potencial de membrana para negativo (interior em relação ao exterior). é a repolarização do neurônio, de volta ao potencial de repouso de membrana, bastante negativo.
48-
49: 6. a grande corrente de saída de íons de potássio pelos canais voltagem-dependentes de potássio gera temporariamente um potencial mais negativo do que o potencial de repouso de membrana. esse fenômeno é conhecido como hiperpolarização de membrana. nesse ponto, as comportas inibitórias dos canais voltagem-dependentes de potássio se fecham e o potencial de membrana volta a ser comandado pelos canais de repouso de potássio. as bombas de sódio e potássio continuam bombeando íons de sódio para fora e íons de potássio para dentro, prevenindo dessa forma a perda do potencial de repouso de membrana a longo prazo. o potencial de repouso de -70 mv é reestabelecido e o neurônio é considerado repolarizado.
50-
--
52-
53:1- quando o potencial de repouso de membrana sofre uma variação de 10 mv (de -60 a -50 mv), atingindo o limiar de excitação, ocorre a sinalização para a abertura dos canais lentos de k+ e das comportas de ativação dos canais rápidos de na+ e para o fechamento das comportas lentas de inativação dos canais de na+. isso leva a um influxo imediato de grande quantidade de íons na+, levando a uma despolarização da membrana da célula.
54-