/cygdrive/d/Potencial/Fr/Pages-completes/repos/01.TXT
5-quand une cellule est au repos on dit que celle-ci présente un potentiel de repos de la membrane qui se situe généralement entre -20 et -200 milivolts (millième de volts) selon l organisme et le type de cellules considérées.
6:à l état normal des cellules baignent dans un liquide appelé liquide interstitiel qui est plutôt riche en ions sodium (na+). ces ions sodium sont le résultat d un atome de sodium qui a perdu un électron. pour comprendre le phénomène de potentiel de membrane il est nécessaire également de savoir que la membrane de la cellule est légèrement perméable à l ion potassium (k+) et presque imperméable à (na+). il s opère donc une entrée de sodium vers l intérieur de la cellule attiré par son propre gradient de concentration (voir ci-dessus) alors que l on observe parallèlement une sortie de potassium également en suivant son gradient de concentration. c est la diffusion inégale de ces deux types d ions à travers la membrane de la cellule qui produit une accumulation d ions positifs à l extérieur de la cellule et d ions négatifs à l intérieur de la cellule. ceci crée le potentiel de repos de la membrane. autrement dit la concentration de potassium est plus élevée dans la cellule que dans le liquide interstitiel extracellulaire (à l extérieur de la cellule). à partir de cet instant la diffusion du potassium vers l extérieur va créer une séparation de charges de part et d autre de la membrane, celle-ci est entretenue par l action de la pompe à sodium et à potassium.
7-
50-
51: b. le transfert des cations de 1 vers 2 a polarisé la membrane [1 : (-) - 2 : (+)] et crée un gradient électrostatique de 2 vers 1, qui tend à s opposer à la fuite ionique né du gradient de concentration. le travail électrostatique, s opposant à la diffusion de l ion dépend :
52-
53: de la valence de l ion z
54- de la quantité d électricité que représente un ion gramme f = faraday = 96 500 coulombs
--
67-
68:pour effectuer ces calculs, nous partons, à chaque fois, du principe que la membrane est perméable à un seul ion et imperméable aux autres. de plus, les valeurs calculées varient selon les cellules en fonction des concentrations ioniques des milieux extra- et intracellulaires comme de la température centrale de l espèce (invertébrés ou mammifères ) à laquelle appartiennent les cellules étudiées.
69-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-03.TXT
/cygdrive/d/Potencial/Fr/Pages-completes/repos/03-04.TXT
5-
6:pour traverser la membrane, un ion est soumis à un gradient électrochimique (ou driving-force des anglo-saxons), qui s exprime par la différence entre le potentiel de membrane (vm) de la cellule et le potentiel d équilibre de l ion considéré (eion). le flux net d une espèce ionique au travers de ses propres canaux est proportionnel à ce gradient électrochimique.
7-potentiel d equilibre
--
24-
25:dans le cas d un canal ionique, la conductance caractérise la facilité avec laquelle les ions traversent le pore aqueux de la protéine-canal.
26-
27:la conductance de toute la membrane d une cellule pour un ion (conductance ionique membranaire), gion, est proportionnelle à la conductance élémentaire d un canal ionique : gion, mais aussi au nombre total de canaux de l espèce ionique considérée dans la membrane : nion et à la probabilité p0 pour que ces canaux soient à l état ouvert :
28-
--
30-
31:la valeur de gion peut varier de 10 à 200 ps (1 picosiemens, ps = 10-12 siemens) selon le type de canal ionique. notons que la plupart des canaux ioniques ne sont pas parfaitement sélectifs : la mesure de gion dépend donc des conditions expérimentales et, en particulier, de la présence d autres ions.
32-3. les courants ioniques
33-
34:l électrophysiologiste mesure des courants. l intensité du courant (iion, exprimé en ampères : coulombs.sec-1) traversant un canal ionique ou courant ionique élémentaire est égale à :
35-courant ionique membranaire (iion) = gion (vm - eion)
/cygdrive/d/Potencial/Fr/Pages-completes/repos/04.TXT
22-t : température absolue en degrés kelvin
23:z : valence de l ion
24-f : faraday, 96500 coulombs/mole d ion
--
31-
32:si la membrane n était perméable qu à un seul ion, le potentiel de membrane au repos serait égal au potentiel eion calculé comme ci-dessus. tel n est pas le cas et chaque ion est soumis à un gradient électrochimique exprimé par la différence entre le potentiel de repos em de la membrane et le potentiel théorique calculé e (ion), gradient dont l effet sera de créer un flux d ion, donc un courant ionique. la transposition de la loi d ohm u = r i à un gradient électrochimique donne :
33-
--
35-i (ion ): courant ionique
36:g (ion) : conductance de la membrane pour l ion (inverse de la résistance)
37-em : potentiel de membrane mesuré
38:e (ion) : potentiel d équilibre de l ion considéré.
39-
--
45-
46:les neurones sont polarisés négativement au repos. la membrane est perméable aux ions qui la traversent librement par des canaux de fuite. l état de repos est principalement du à la perméabilité de la membrane au k+, l ion principal du milieu intracellulaire, qui sort par diffusion. de façon plus limitée, un peu de na+, l ion majoritaire du milieu extérieur, tend à entrer par diffusion à travers les canaux na+ de fuite. ces mouvements passifs d ions devraient tendre à équilibrer les concentrations de part et d autre de la membrane ce qui annulerait la valeur du potentiel de repos. ce phénomène est contrebalancé par le fonctionnement d une pompe na+/k+ qui utilise l énergie pour s opposer aux fuites par diffusion. le potentiel de repos peut ainsi se maintenir stable en fonction du temps.
/cygdrive/d/Potencial/Fr/Pages-completes/repos/05.TXT
17-
18:tout d abord, essayons de comprendre un élément extrêmement important tant pour le potentiel de repos que pour le potentiel d action. cet élément c est l ion. un ion est un atome qui a perdu sa neutralité électrique (tout atome est neutre ayant autant d électrons que de protons) par acquisition ou perte d un ou plusieurs électrons. ainsi, s il perd un ou plusieurs électrons, il devient positif. s il en gagne, il devient négatif. voyons maintenant le rapport des ions avec les neurones. les milieux extérieur et intérieur du neurone baignent dans un liquide. l extérieur du neurone baigne dans un liquide riche en ions sodium, chargés positivement, et en ions chlore chargés négativement. tandis que l intérieur du neurone baigne dans un liquide riche en ions potassium chargés positivement et en protéines chargées négativement. bien entendu, puisque le neurone est neutre, il y a autant de charges positives que négatives baignant dans les liquides des milieux intra et extra cellulaires (à l intérieur et à l extérieur de la cellule).
19-
/cygdrive/d/Potencial/Fr/Pages-completes/repos/PDF/10.TXT
36-iii - généralisation de la notion de potentiel de membrane et propriétés électriques passives de la membrane
37:1) cas où la membrane est perméable à un seul ion: pile de concentration (équation de nernst)
38-d une manière générale, si la perméabilité de la membrane cytoplasmique pour une espèce ionique i augmente, le potentiel de membrane devient égal au potentiel d équilibre thermodynamique de cet ion i donné par l équation de nernst:
39:où: r = constante des gaz parfaits, t = température absolue z = la valence de l ion (+ 1 pour le k+ et le na+, - 1 pour le ci-, et +2 pour le ca2+), f = faraday, [ion]e = concentration de l ion à l extérieur de la cellule, [ion]i = concentration de l ion à l intérieur de la cellule, à 20°c, rt/f = 25 mv.
40-si z = +1, en base 10:
--
46-2) gradient électrochimique; courant ionique à travers un canal
47:au repos, l intérieur des cellules est chargé négativement par rapport à l extérieur. ce potentiel vm, dit de repos, est rarement égal au potentiel d équilibre d une espèce cationique. ceci est essentiellement dû au fait (comme nous le verrons dans le § ci-dessous) que la membrane n est pas sélectivement perméable à un seul ion, mais que différents types de canaux ioniques sont ouverts dans la membrane lorsque le potentiel de membrane est à sa valeur de repos. lorsqu une espèce ionique n est pas en équilibre, le flux net n est pas nul. a ce flux net correspond un courant que l on peut mesurer.
48-a. la différence (vm - eion) est appelée gradient électrochimique
--
53-b. on définit un terme opérationnel: la conductance
54:d une manière générale, la conductance électrique est une mesure de la facilité avec laquelle le courant se déplace entre deux points. la conductance entre deux électrodes placées dans une solution ionique augmente lorsque l on ajoute plus de sel dans la solution. dans le cas d un canal ionique, la conductance caractérisera la facilité avec laquelle les ions traversent le pore. la conductance s exprime en siemens (s), et est l inverse de la résistance r exprimée en ohms (o):
55- ion = 1 /rion
--
57-gion = ion nion p0
58:la valeur de ? peut varier entre 10 et 200 ps suivant le type de canal ionique. il faut signaler que la plupart des canaux ioniques ne sont pas parfaitement sélectifs, c est-à-dire qu ils laissent préférentiellement passer une certaine espèce ionique, mais que d autres espèces ioniques peuvent aussi, plus ou moins, traverser le pore. cela signifie que la mesure de ? dépendra des conditions expérimentales et en particulier de la présence d autres ions.
59-c. l électrophysiologiste mesure des courants. transposition de la loi d ohm à un gradient électrochimique
60:on peut écrire que l intensité du courant (iion) traversant un canal ionique est égale à:
61-iion. = ion. (vm. - eion)
62:cette expression n est que la transposition de la loi d ohm à un gradient électrochimique. le canal peut donc être représenté par le circuit électrique équivalent ci-contre: le gradient de concentration est assimilé à une pile avec une force électromotrice égale au potentiel d équilibre de l ion mis en jeu. cette pile est placée en série avec une conductance
63-d une manière analogue, on peut écrire que, pour une cellule entière, le courant transmembranaire (iion) transporté par une espèce ionique à travers tous les canaux ioniques de la membrane d une cellule, est égal à :
--
101-le schéma illustré sur la figure 9 est en fait la représentation électrique de la membrane de la quasi-totalité des cellules animales, alors que le potentiel transmembranaire est à sa valeur de repos.
102:fig. 9 – schéma électrique équivalent de la membrane au potentiel de repos. chaque type de canal ionique représenté par la combinaison d une pile et d une résistance en série est placé en parallèle avec cm, la capacité de la membrane et les pompes na/k et ca2+.
103-5) un flux entrant de cations dépolarise la cellule (fig. 10); un flux sortant de cations l hyperpolarise (fig. 11).