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Abstract

The project is to build a model to predict the identities of the werewolves in the
game of The Werewolves of Millers Hollow, aimed for future incorporation in an
AT player program. The corpus data comes from the transcription of Chinese
TV show Pandakill where 12 players are divided into 4 werewolves, 4 ordinary
villagers and 4 divine villagers. The game has several speech and reaction turns
until all the werewolves are eliminated, or either all the ordinary villagers or
all the divine villagers are eliminated by werewolves. We assume that our Al
plays as an ordinary villager to analyze all the speeches and behaviors before
its reaction. The speech analysis is composed of 2 steps: the classification of
the intent of a single sentence, and the summarizing of sentence meaning and
player attitude in a speech turn. The first step is implemented with one of
several machine learning and deep learning methods such as Multinomial naive
Bayes, logistic regression, Linear support vector machine and Long Short Term
Memory model in recurrent neural network; those methods are compared to
each other. The second step, along with the behavior analysis part, is built by
hand-crafted rules, which in the end gives a most probable Werewolf Team for

each game turn.
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1 Introduction

The Werewolves of Millers Hollow (French: Les Loups-arous de Thiercelieux)ﬂ
is a role-playing game created by French authors Philippe des Palliéres and
Hervé Marly that can be played with 8 to 47 players. The game is based on the
Russian game Maﬁzﬂ It was nominated for the 2003 Spiel des Jahres award.

There are numerous variants and extensions of the Werewolves game. Since
its introduction in China, this game gained a lot of traction there. The unique
entertainment and television system in the country has been a fertile ground
for many television programs and internet streams where famous stars and web
video bloggers play this game, which again, brings it more popularity and vari-
ants. In particular, we will refer in our project to the TV show Pandakil]ﬂ to
set game rules and retrieve corpus data.

All the variants share the same few basic principlesﬂ One of the players
serves as the Moderator and the others sit in a circle. The Moderator randomly
assign the other players a role, and with each role comes predefined abilities.
The roles are kept secret and unchangeable during the whole game. Then the
game plays out during cycles of night (when players act) and day (when players
discuss and act). There are always two groups of characters : the villagers, some
of whom have special abilities (the divine villagers), and the werewolves who kill
together a player each night. The goal of the villagers is to find and eliminate
all the werewolves by voting for a suspicious player to be executed each day or
by using the special abilities of the divine villagers. Similarly, the goal of the
werewolves is to eliminate the villagers ; in the "all-to-kill" variant, all villagers
have to be killed, while in the "part-to-kill" variant, the wolves need only to kill
either all the divine villagers or all the ordinary villagers.

As is the case in the ancestor Mafia game, most of the gameplay revolves

around deceit : werewolves need to hide undetected among the players to avoid

Thttps://en.wikipedia.org/wiki/The_Werewolves_of_Millers_Hollow
%https://en.wikipedia.org/wiki/Mafia_(party_game)
Shttps://zh.wikipedia.org/wiki/Panda_Kill

4For more details, see complete game rules in section
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execution during the daily trials. Villagers also gain some interest in concealing
their identity, especially the more powerful divine villagers who are targets of
value for werewolves. Also, in the part-to-kill variant, it can also help to waste
the werewolves’ killing between ordinary and divine villagers.

Our motivation will be to write a chatbot that can serve as an Al player
in this game (other than the moderator). Such a program can be decomposed
into three parts: speech-to-text, then comprehension of the situation (identities
of the other players, how they interact) from the text input, then response
generation. In this work, for more simplicity, we would first want it to perform
as an extra player out of the original 12 players with a right to observe all
information in the game, who will play probably as an ordinary villager in the
future and whose position in every speech turn is the last. Additionally, we will
focus on the second part, in particular to have a basic understanding of what

the players say and guess who the wolves are.

1.1 Project design

The Werewolf’s game is a dynamic game with imperfect information: it has
several turns and in each turn the players get more information, and they could
give different reactions. In order to achieve our goal, we decompose the infor-
mation into two parts: the speech part and the behavior part. The advantage is
that we can process the speech part independently from the game’s procedure.
Then we add the behavior features to make more logical analysis.

The project is designed in three steps: classification of a single sentence’s
intent, inference of the relationships between the players, and prediction of
players’ identities. More precisely, we first classify sentences into basic labels
like "attack" (when it accuses a player), "protect”, "defense", etc. Then, from
this information, we try to describe globally who attacks whom and who protects
whom. Finally we guess who the wolves are. The first two steps rely on the
speech, and the third uses behavior.

The first step consists in a classical text classification problem. We use and



compare several machine learning algorithms to classify the sentence meaning.
We have basically two ideas of how to represent the sentence, by a traditional
Bag-of-Words theory without considering the context features or by the word
embedding with a recurrent neural network which takes context in consideration.

The second step of finding "who attacks whom" asks for the dependency
parsing of a sentence. We will use the library HanLLP to parse the dependency
structure of Chinese sentence. We then reunite these information to make an
extraction of the meaning of an entire speech turn of each player.

The last step of the deduction of "who is the werewolf" is based on all the
information given by the previous steps, plus the behavior information. Due to
the limited quantity of data, we will not use machine learning methods but just

a logic induction.

1.2 State of the Art

Since the beginning of modern computing, chatbots have been envisioned as
the face of artificial general intelligence, and a functional example was first pro-
duced in 1966 with Joseph Weizenbaum’s ELIZA [Weizenbaum, 1966]. The fa-
mous Turing test proposed in 1950 already aimed at evaluating the performance
of such conversational programs. Today, chatbot have found applications well
beyond general conversational agents, with some serving as personal assistants
in smartphones and home speakers, and others specializing to specific contexts
such as customer service.

The dominant paradigm since the beginning of the history of chatbots has
been to choose the output (the response) among a finite number of possible
response templates : this is the information retrieval paradigm. It ensures that
the responses have the highest grammatical quality.

The first implementations of the retrieval based model, starting with ELIZA,
are ruled-based systems: the program analyzes the keywords in the user in-
put and chooses the response based on them, using hand-crafted rules. This

method has been the dominant one for decades, with a notable example being



Richard Wallace’s ALICH?], a 1995 general conversational chatbot that relies
on a database of thousands of rules. As of today, rule-based systems are still
competitive enough to be widely used in some industries. For instance, many
products of customer service chatbots are designed this Wayﬂ

More recently, advances in computing power and data collection have en-
abled new techniques that use machine learning to bypass the crafting of compli-
cated rules. Typically, simple models using logistic regression or support vector
machines can carry tasks such as sentiment analysis, or classifying between state-
ments, open questions, closed questions, answers, etc. Recent applications in-
clude medical interviewer bots designed for diagnosis support [DeVault et al., 2014].
In situations where the space of possible responses is more limited, such as FAQ
customer service, classifiers can also be implemented to carry the whole task.

The features used in those models generally involve the words of the input,
such as bag-of-words or n-grams. Words can then be encoded discretely, i.e. as
vectors whose dimension is the size of the vocabulary.

Recent developments using small neural networks have also allowed for better
word embedding, considerably reducing the dimension. Those embedding are
typically based on a predictive model for words in a sentence, using simple
discrete features as CBOW and skip-grams [Mikolov et al., 2013], and each word
is mapped to the corresponding trained parameters of the model. State-of-the-
art word embedding word2vec [Mikolov et al., 2013] also mysteriously gets new
semantic properties. For example, a reasoning such as "X is to 'woman’ what

' can be translated into the vectorial equation "king — man +

’king’ is to 'man’’
woman = X", and the result X using word2vec is closest to the embedding of
"queen"; similarly, Paris — France + Germany = Berlin".

Those word embeddings have notably been leveraged by the latest technique
in machine learning, using deep learning to achieve top-grade results. For exam-

ple, Google rolled out a Smart Reply feature on the world’s most popular email

platform with great success, using neural networks to predict possible responses

Shttps://en.wikipedia.org/wiki/Artificial_Linguistic_Internet_Computer_Entity
Shttp://southpigalle.io
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given an email as input [Kannan et al., 2016].

More impressively, deep learning has allowed to break free from the informa-
tion retrieval paradigm, building generational models that allow for infinitely
more diverse responses while keeping an acceptable grammatical level. The
Sequence to Sequence model [Sutskever et al., 2014] is an example of program
that builds its own responses word by words (output sequence) given an input
sequence, and it can been applied for example to social media manager chatbots
[Xu et al., 2017]. Actually, Google’s Smart Reply is also based on Sequence to
Sequence, although it maps the output sequence to its nearest neighbour among
a set of possible responses, to keep the highest grammatical quality provided by
the information retrieval paradigm. Generational models can also consider sen-
tences as a whole as opposed to the word-centric Sequence-to-Sequence, drawing
on Statistical Machine Translation [Ritter et al., 2011].

In our project, we focus on an approach based on the information retrieval
paradigm. Due to the specific nature of the task, namely develop an Al player in
a game, it would be best suited to follow the steps of the first implementations
of machine learning in chatbot design history (c.f. above). That is to say, we
will make use of classical machine learning algorithms (naive Bayes, logistic
regression, support vector machine) and deep learning architectures (LSTM) to
develop classifiers for text comprehension and to further help analyze the inputs

from the other players.

1.3 Werewolf game rules

The game of Werewolf is a role-playing turn-based game. One player, the
Moderator, stays out of the game and ensures the good development of the
events, in particular by keeping track of the players’ status and by telling each
player in time what they have to do.

The game unfolds in alternating day turns and night turns starting with the
night. During the night, players act using their special abilities. During the

day, a player is executed ; before the execution, players talk one by one then a



vote is cast to decide which player is to be executed. This will all be explained
in more details in section [1.3.Dl

Although the original game is invented by two French gamers, the game
has developed a lot after being introduced in China. Nowadays, the game in
France is more like an entertaining party game while in China people tend to
play it more seriously. For example, the game in the French official web pageﬂ
allows players to play online, in text, and discussion during the game. But in
China, all the discussions are forbidden, players can only speak when it comes
to his speech turn. Since our data refers to the professional game of Werewolf in
the TV show "Pandakill", we will take their rules and role parameters as ours,

instead of the original French version.

1.3.a Roles

All the players except the Moderator are assigned a role (their identity),
that is only revealed to the others at the end of the game. We list the different

roles with the special abilities that gift them:

Werewolf During each night turn, the werewolves collectively kill one player
of their choice. During a day turn, a werewolf can also choose to suicide;
this has the effect of eliminating himself and stopping the day turn (so
that the next night turn starts immediately).

White wolf The White wolf is the same as a werewolf with the additional
ability that when he suicides, he can target one player of his choice who

will also immediately die.
Ordinary villager Ordinary villagers do not have any special ability.

Seer During each night turn, the Seer can choose one player and see whether

he is a werewolf or not.

Witch The Witch has two bottles of potion, one poison and one antidote.

They are to be used during night turns: the poison kills one person of the

“https://www.loups-garous-en-1ligne.com
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Witch’s choice, and the antidote can revive the player that was killed by
the wolves during the same night. Both potions can only be used once,
can not use both in the same night, and can only use the antidote on

herself during the first night.

Ancient During each night, the Ancient can choose one player; this player will
be barred from speaking during the next day, and will only be allowed to

communicate with gestures.

Assassin Each night turn, if the Assassin’s execution vote the previous day
was not in the majority, then he can decide to unilaterally kill the person

he voted for to be executed, or not.

Hunter The Hunter has a gun. If during a night turn he is the target of the
wolves and the Witch does not save him, or if he is executed during a day,

he can shoot one player of his choice, who then dies.

Idiot If the Idiot is executed during a day, he dies but keeps participation in the
game as a ghost. During subsequent days, he can interrupt other players’

speeches three times per day.

Savior Each night, the Savior can choose a player (including himself) to protect
from the wolves (but not from the Witch). This ability can not be used

on the same player two consecutive nights.

Werewolves and the White wolf form the Wolf team. The other players form
the Villager team. Among the Villagers, we distinguish the ordinary villagers

from the others, which we call divine villagers.

1.3.b Mechanics

The two teams (Werewolf and Villager) compete for victory. The villagers
win when all the werewolves have been eliminated (i.e. either by the day-time
executions, either at night). The wolves’ victory conditions depend on the game

variant. In the "all-to-kill" variant, they win when all the villagers (divine or
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ordinary) have been eliminated. In the "part-to-kill" variant, they win when
either all the ordinary villagers or all the divine villagers have been eliminated.

As we explained in the introduction of this section, the game is played in
alternating night and day turns, starting with the night.

During the night turns, the Moderator calls all players (except the ordinary
villagers) one by one to act according to their special abilities. The wolves are
called together, so they have the advantage of knowing which players are in
their team.

During the day turns, the Moderator starts by announcing the players who
have died in the previous night, then the players speak one by one. The pur-
pose of these speeches is to explain guesses about the players’ identities; when
all players have spoken, a vote is cast to execute one player. Afterwards the
executed player can speak once more, then he is eliminated (if this player is the
Hunter, his target also gets to speak once more). This closes the day turn, and
the following night starts.

There is a special rule for the first day: after the Moderator announces the
fatalities (if any) of the first night, the eliminated players can choose to speak
before exiting the game, then the round of speeches starts for the remaining
players.

Also, at any time during a day turn, a wolf may choose to "suicide by
explosion". This has the effect of eliminating himself and of interrupting the
turn, so the game directly proceeds to the following night turn (without the
remaining speeches and execution).

Strategically, the wolves will try to deceive the villagers during the day-
time speeches. Conversely, in part-to-kill games, villagers can also gain interest
in deceiving the others, since it makes it harder for the wolves to distinguish
ordinary from divine villagers.

The games in our corpus follow three variants:

1. 4 werewolves, 4 ordinary villagers, one Seer, one Witch, one Ancient, one

Assassin; part-to-kill.

12



2. 4 werewolves, 4 ordinary villagers, one Seer, one Witch, one Hunter, one

Idiot; part-to-kill.

3. 3 werewolves, 1 White wolf 4 ordinary villagers, one Seer, one Witch, one

Hunter, one Savior; part-to-kill.

The Captain There is one more mechanism to the game that we have not
explained yet. In order to reduce ties in the execution vote, one player is assigned
1.5 votes. He will be called the Captain.

The Captain is chosen by a vote right before the beginning of the first day,
before the Moderator even announces the fatalities of the first night (so all the
players are still participating). All the candidates to the position get to speak
one by one (in an order randomly decided by the Moderator). Some candidates
may quit the election. Afterwards all the non-candidate (excluding candidates
that quit) players vote. In the event of a tie (commonly called "PK’ in Chinese),
the tied candidates get to speak once more, and all the other players (previous
candidates or not) vote. If the vote is still tied, all the players except the
remaining tied candidates speak, then those players vote. If there is still a tie,
then no Captain is chosen for the game. The first day then proceeds normally
(starting with the Moderator review of the first night).

In the event that a wolf "suicides by explosion" the first day before a Captain
is elected, then the vote is cast right before the beginning of the second day
without the remaining speeches (and if there is a tie, the process continues
normally).

When the Captain dies, he can immediately choose a successor (if he died
during the night, the succession happens right after the moderator announce-
ment at the start of the following day). He can also choose to "tear his badge",
i.e. not designate any successor, in which case there is no Captain anymore.

Strategically, the villagers will want to elect the Seer as Captain, so that
in the (likely) event of death, the successor most likely stays in the villager

team. Some villagers may be candidate to get some speech time, but they will

13



typically quit before the vote. The wolves will of course also try to get one of

them elected.

2 Speech processing

In this part, we will firstly explore the data by introducing the original corpus
and explaining how we annotated it, then by giving some statistics of the corpus.

Secondly we will explain how we classified the intent of a single sentence, with
the representation of Tf-idf which considers a sentence like a bag-of-word and the
representation of word-embedding which takes the context into consideration.
For the first part with Tf-idf, we will use classical machine learning methods
and in the second part, we will use a recurrent neural network with LSTM.

Finally we will add the syntaxical features to retrieve the subject and object

of the sentence, in expectation of making summarising a player’s speech turn.

2.1 Data exploration
2.1.a Corpus and annotation

Here we will explain more details about the corpus and the annotation, along
with the different processing of the speech and behavior parts.

The corpus is collected from the Chinese TV show Pandakill, so the rules are
also based on Pandakill variants. The subtitles are written down and arranged
in order. Since the subtitles are what the players speak, we deleted some oral
words and made slight modifications to the incorrect grammar.

About how to take down the subtitles of the TV show, first the subtitles are
hard written into the video, so there is no subtitle file that could be downloaded.
We then tried to contact the producer of the TV program, or some online
platform to process the speech to text task like IBM Watsorﬂ Google Cloudﬂ

and Chinese specific platform IFlyTekIE it turned out that the manual notation

8https://www.ibm.com/watson/services/speech-to-text/
9nttps://cloud.google.com/speech-to-text/
Ohttps://www.xfyun.cn/
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is the most convenient and high quality way. We then separate the text into
paragraphs of every player’s speech turns with their player number. Since the
text is from oral language, there might be very long sentences. For the further
concern of annotation, we separated the long sentences into short sentences to
keep each one a complete and clear sense as possible.

Since the corpus comes from the TV show, all the players play more profes-
sionally than in a standard leisure game with a group of friends. They are all
clear about the game rules and strategies; they develop the logic well and always
have a lot to analyze. However this level of professionality also has drawbacks.
The number of players is 12 and the complexity of everyone’s speech and logic is
improved. For instance, they often use reasoning by contraposition, like "if P2
was really the werewolf, he would not have used this strategy to expose himself".

Due to the complexity of text and the length of a speech, parsing the sen-
tences directly becomes very complicated. To predict a player’s character di-
rectly by his speech and behavior in several turns is therefore unrealistic, unless
we have access to a giant corpus with thousands of recorded and annotated
games, in which case the Deep Learning methods might be useful. Since we
only recorded 9 games, we have to divide the work into little pieces. A basic
idea is to first analyze each sentence or each two sentences separately. Then we
analyze the whole speech of a player in one turn. The ideal is to finally make a
configuration of the probability distribution of characters for each player. Before
getting that far, we first make a configuration of the situation of battle based on
the speech and behavior of all players in a turn. Relying on these information
and features, we might predict the character of each player.

The original 9 data files use 3 game variants, with 3 files for each variant.
They are pure text files and each records a whole game, including the game
rule, the announcement of the Moderator and the statements of players. As
what we can see below in a little extract of the file, the first paragraph is the

announcement of the Moderator:

FROTIR . REFHR . RET, WAEMTERTE. FEEE

15



BRIIK . EEF- 15, 25, 55, 95, REXALIIRSS
Tk M2FMIEFIRAE -

which means, in English:

"Night falls. Day comes. Now begins the captain election. The
electors please raise your hand. P1, P2, P5, P9, P12 in total 5
players participate in the election. Please give your election speech,

start from P2."

Then comes the first statement by a player (here P2), the format is as below:

P2:Name of the player:Statements:Character

For convenience’s sake, we replaced the Name of the player by his player
number. Also, Chinese numbers appearing before the character 5 were re-
placed by their Arabic counterpart, for example " —5" becomes "P2". We also
annotated the real identity (the role) of the speaking player at the end of the
paragraph.

2525 MEZK AN —TERUL, EBIRCRTSTS, HE555
To DERERM EREREI2S, 125MERMEK. - IR

In English, this is:

"P2:P2:1, the Seer, will first give my order of succession as Cap-
tain (jinghuiliu) - first to verify (yan) P7, then P5. Last night I
checked P12, and he is a good identity (jinshui). Over.:Werewolf"

We will consider the game information as two parts. One is the speech, or
the so called statement part, which includes all players’ speech turn. Another is
the behavior part, which record the votes and the death status, etc. The main
part of this paper is the speech text processing and understanding, with in the
end some behavior or logic added for the analysis of character. The speech part
is retrieved in csv format while the behavior part is noted in json format.

Here we show an extract of the data form in csv format. The column

"episode" is the episode number of the game in the TV show Pandakill. The

16



column "timestamp" represents the turn name in the game, for example "cap-
tain_election", "nightl lastwords", "dayl speech", "dayl lastwords", etc.
More details are explained in section[I.3]in the game’s rule. The column "player"
represents the player number of the speaking person, while "speech" is what he
says. Note that we split a speech turn of one player on smaller sentences, each
of them contains a basic meaning unit, which we call "intent", and which is the
very last column of the table. The column "character", as already annotated in
the original pure text file, is the player’s identity.

We translate the first row of the table below:

S1E601 : captain_election : P1: Me, the Seer : Ordinary villager : defense

episode | timestamp player | speech character | intent
0 | SIE601 | captain_election | 15 15TER - B defense
S1E601 | captain_election | 15 FER FEAESH. | B attack
HAVERIR SRS IX
2 | SIE601 | captain_election | 15 Wi, BARE—E R to_check
ERIRA, SRR AR
MIEERER T -
NIFFHRNE, FHR3T
3 | S1E601 captain_election | 15 XEREE, 35 R R’ to_check
KKT, .
HARA IR — 1K
4 | SIE601 | captain_election | 15 SPLERBLER, L9 B to_check
FHR3 .

Here is the list of in total 8 intents of our labels:
defense claim oneself to be good or answer other people’s suspicion

attack accuse other players as being werewolf, or criticize others’ behavior as

werewolf-like, suspect others of having a bad identity

protect claim others to be good, recognize others’ claims as divine, or explain

why others are not werewolves
self attack suicide, abandon the defense, or recognize oneself’s mistake

to_check express desire to check some player’s identity or persuade the Seer

to check him

17



hang on not sure of someone’s identity and can’t distinguish whether he is

good or bad

ph summarize the actual situation, analyze a complicated logic or present one’s

thoughts

none say "over" or make decisions as Captain (like "right hand order"), or talk

about irrelevant things or make jokes

We annotate the sense of the sentence just by its superficial sense, without
studying the real role of the speaker, neither his relation with the player that he
mentions. For exemple, as long as the speaker recognises another as werewolf,
whether they are companies or not, he attacks the other one.

As Chinese is a language which does not have spaces between words, we used

the library jieba{ﬂ to segment the Chinese sentences.

episode | timestamp player | speech char. | intent segmented
0 | SIE601 | captain_election | 15 ISHER- R defense 1-5-FER
1 | SIE601 | captain_election | 15 WERM AR S | R attack TR L E A
J-5- 5

HIBERRERITX Fe-HO- BB

2 | S1E601 captain_election | 15 i, HARE—ER N to_check S92 B
ERIRA, AR ER . -H-RAK-IE—IE-
KA ERGERT - LRS-
NI, BR3Y NIE-FI-T-, -

3 | SIE601 | captain_election | 15 SXERRR, 35 ELi s R to_check | Ff48-3-SixX-GkpE-
KKRT, . 3-SR
A BIRATRE— K - AT IRAT- -

4 | SIE601 | captain_election | 15 FEMITR, IR N to_check | J&-—IKPLk-
3. B-BR-, -H-..

We can see that in the column "segmented" there are dashes added between
words (they are spaces in the original document, we changed them to dashes

here and cut some parts for visibility).

2.1.b Statistics

We have in total 4744 sentences split and annotated. As described in the

previous part, we have 9 original files, each file records an episode of game in

Mhttps://github.com/fxsjy/jiebal version number: 0.39
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the TV show. Here we can see that among the 9 episodes, the longest has 860

sentences. The dayl speech is the turn with most statements.

episode | timestamp | player | speech | char. | intent | segmented
count | 4744 4744 4744 4744 4744 | 4744 4744
unique | 9 13 12 4659 10 8 4659
top S3E202 | dayl_speech | 55 pui B attack | it
freq 860 1402 520 35 1639 | 1604 35

The distribution of each intent label is shown in figure [I]
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Figure 1: Distribution of the intent labels among the sentences

We can see that the most frequent label is attack and the least frequent is
self_attack.

We then count the length of the segmented sentences. The data are repre-
sented in figure

We can see that the longest sentence has 101 words, and shortest just one
word. The average sentence length is 20, and 75% sentences have less or equal
to 27 words.

In the study of hotwords, we found some special terms used in the game.

We list them in the appendix
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Speech Length Statistics

200
count | 4744 e
mean | 20.75 150 -
st(_i 11.16 125
min 1
25% 13 100 -
50% 19 75 -
5% 27
max 101 0
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Figure 2: Distribution of the length of the sentences across the corpus

2.2 Intent classification

In this part, we set out to classify the intent of a single sentence (as defined
in section using machine learning methods. We first try classical machine
learning algorithms using the Tf-idf representation of Bag-of-Words concept.
Then, we will implement a recurrent neural network by representing the text
with word embedding in order to take the context into consideration.

We will use only two columns of the annotated corpus: the column "seg-
mented" as texts and the column "intent" as classes. The train and test sets

are in proportion 9:1.

2.2.a Without contextual features

In this part, we will introduce the work of classification by some classical
machine learning methods. We represent the text by Tf-idf features according
to the theory of Bag-of-Words (BOW).

We will mainly use the library Scikit—LearrB to do this task, since it has some
useful text processing functions like CountVectorizer and TfidfVectorizer.

It also has a complete set of machine learning algorithms among which we will

12scikit-1learn.org, version number: 0.19.1
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use naive Bayes, logistic regression and support vector machine (SVM).

2.2.a.i Tf-idf The BOW [McTear et al., 2016] considers a sentence as a bag
of words, which means that the order of the words is not taken into account.
Hence this thinking simplifies drastically a sentence by removing its contextual
and syntaxical features. This makes the text classification tasks using BOW
very fast, while it has still been proven to be very useful.

Let’s review quickly how a sentence can be represented as a BOW and how
can we use it in our classification task.

Suppose that we have a corpus with four sentences: "I love cats", "Cats love
fish", "I love cats, cats love fish", "I will eat fish".

We then have a vocabulary of 6 words. We can order these 6 words in a dictio-
nary: {¢17: <12, ¢2°: ‘love’, ‘3’: f‘cats’, ‘4’: ‘will’, ‘5’:
‘eat’, ‘6’: ‘fish’}.

Then we could translate the four sentences to vectors of dimension 6, each

coordinate counting the occurences of the corresponding word in the sentence:

"T love cats" [1,1,1,0,0,0]
"Cats love fish" [0,1,1,0,0,1]
"T love cats, cats love fish" | [1,2,2,0,0,1]
"T will eat fish" [1,0,0,1,1,1]

This can be done using CountVectorizer in Scikit-Learn.
Actually, we can normalize the vectors by dividing the coordinates by the
length of the sentence: thus we have replaced the occurrences by the term

frequency:
n(word in sentence)

TF(word, sent =
(word, sentence) n(all words in sentence)

Further, we want to reduce the importance of words that are too common,
like "the" or "and", that would give too large components in the vectors. Either
we define a stop words list to delete all the common words in the sentences that
we don’t want to calculate, or we use the Inverse Document Frequency (IDF),

which is a function of the number of sentences of the corpus that contain the
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word:
n(all sentences)

IDF (word) =1
(word) = log n(sentences having this word)

Or we can use both of them.

The sentences are then represented by vectors where the coordinate corre-
sponding to a word is TF(word, sentence) - IDF(word)[Manning et al., 2008].

The computation of the Tf-idf representations can be done in Scikit-Learn
with TfidfVectorizer. In fact, this functions allows for tuning of many hyper-
parameters, which all give a variant of the Tf-idf representation as explained

above. The hyper-parameters are the following:

min__df the words which have frequency lower than the min_df threshold will

be ignored when building the vocabulary

max__df the words which have frequency higher than the max_df threshold

will be ignored when building the vocabulary

stop_words the words in the stop_words list will be ignored when building

the vocabulary

max_ features the maximum number of words of the built vocabulary; are
kept only the max_features words that occur the most frequently across

the corpus

ngram _range the range of ngram characters/words when building the vocab-
ulary; for example, if the vaue is (1,2), then only unigrams and bigrams

will be considered

norm the method used for normalizing the term frequency

Getting these hyper-parameters right is important for a good Tf-idf vector
representation, so that we avoid having too many features or too few features,
and that we have the most important features.

We fine-tuned those features with GridSearchCV, which was fed the follow-
ing dictionary, according to their performance on the naive Bayes classification

presented in section
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{

max_df : (0.1, 0.25, 0.5, 0.75),

min_df : (0.001, 0.0025, 0.005, 0.025),
max_features : (None, 5000, 10000, 50000, 100000),
norm : (’11°,°12°,),

stop_words : (stop_chl,stop_ch2),

ngram_range : ((1, 1), (1, 2), (1,3))

}

Since the number of combinations of these parameters is too large, we won’t
present the results associated with all of them. Here we only give the optimal
parameters for the TfidfVectorizer: those are max_df=0.75, min_df=0.005,
max_features=None, ngram_range=(1, 3), norm=’12’ and stop_words
containing also Chinese and Arabic numbers.

Hereafter, we will always use this vectorizer.

2.2.a.ii Naive Bayes naive Bayes is a family of probabilistic algorithms
that is widely used in text classification tasks [Schneider, 2005]. They take
advantage of Bayes’ Theorem in probability theory to predict the class of a
text. More precisely, they estimate the probability of each class for a given
text, and then output the class with the highest one. The estimation of the
probabilities uses Bayes’ Theorem, which describes the probability of a feature
based on prior knowledge of conditions that might be related to that feature;
hence the name of the method.

We will use the multinomial naive Bayes algorithm because we have 8 intents
to classify. To better explain what we did and why we chose multinomial naive
Bayes to begin, we will briefly review the concept of naive Bayes algorithm along
with our data example, for more details, see [McCallum et al., 1998].

We give an example of 4 sentences as below.
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segmented intent

1 | I, P1, the Seer. defense

2 | T checked P5 last night and he is a villain. attack

My order of succession as Captain is first this P9,
3 to_check

if he is a villain, I then call for his execution.

Then I want to check P3 because he has progressed
4 to_check

a lot these days.

For the sentence i, the Bayes classifier will assign the intent ¢(i) € C' (where

C' is the set of all intents) with maximal conditional probability:

¢(i) = argmax, . P(c | ©)

Bayes’ theorem gives

P(c | i) =P(i | )P(c) /() (1)

The factor P(¢) does not have a real interpretation, but it does not matter
since it appears in all the probabilities we want to compare so we can simply
ignore it. The factor P(c) is computed as the frequency of the intent ¢ among
the annotated sentences of the training set.

The last factor P(i | ¢) is trickier. To compute it, we make the naive as-
sumption that the words in the sentence are mutually independent, so that we

can write (here for the first sentence of our example)

Pii=1]c)=P"" | o)P("P1" | ¢)P("the" | ¢)P("Seer" | ¢)

We then estimate P(word | ¢) as the number of training sentences classified
as ¢ where the word occurs, divided by the total number of training sentences
classified as ¢. To avoid having the whole probability driven down to 0 by a
single word occurring nowhere in the training sentences labeled ¢, we apply
to every word a Laplace smoothing adding 1 to the occurrences, so that these

non-occurring words have a very low non-zero probability.
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Thus we can compute, for each sentence i, the P(c | ¢) for all the classes ¢
using equation [I] and return the class giving the greatest probability.

In fact, many things that can be done to improve this basic model. For
example, we can replace the occurrence of words by their Tf-idf features as
we introduced before. We can also lemmatize the words to group their different
inflection or remove stop words to make the sense more concise. For the Chinese
language, the lemmatization might not be so essential as for other languages,
because this language doesn’t have inflections and the combinations of Chinese
characters can produce new meanings while each character individually has its
own meaning.

Our implementation of this algorithm uses the module MultinomialNB from
Scikit-Learn, with the optimal Tf-idf vectorizer found in section There
is one hyperparameter to tune, alpha, which represents the Laplace smoothing
parameter.

When alpha=0.01, a best score on the test set is 0.530526315789. In
comparison with the non tuned model, the score is significantly improved. We

display here some wrong labels:

Bayes
index | speech intent

prediction
2442 | MBEERT —THE, FRFTIXKI0 S ph attack
2365 | Mft2%E, BEARAT12 f2 A S ERE - attack | ph
1082 | B DA, WEREE ERARKIES 5, FI3 SHEHKT | protect | attack

Translated to English, this is:

. . Bayes
index | speech intent
prediction
2442 So I made a guess by Pa Kua, I poisoned P10. ph attack
Why? Because you P12 and P2 both have made a strange
2365 attack | ph

speech.

I am a Witch, last knight the werewolves killed P3, T used
1082 protect | attack

my power to protect him.

The sentence 2442 was annotated as ph because the speaker expressed was
what he thinking about. However the label attack given by the classifier would

also be acceptable.
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The sentence 2365 is certainly an attack on P12 and P2 but is labeled as ph.
Maybe there is no important keyword to be classified by attack and normally
ph sentences have longer length.

The sentence 1082 has "Witch", "werewolves", "killed", "protect" keywords
where "Witch" and "protect" have meaning of protect, but "werewolves" and
"killed" seem to be more common in attack. Perhaps the bayesian probabil-
ities of "werewolves" and "killed" in attack is much higher. In addition, the
probability of class attack is the highest (about % across the corpus). We think
this is probably the reason for this incorrect label.

So we would like to find something else than statistical probability or the
so-called "generative classifiers" like naive Bayes algorithm, we then move to
"discriminative classifiers" such as logistic regression to look for new possibilities

[Ng and Jordan, 2002].

2.2.a.iii Logistic regression Logistic Regression is a very classical algo-
rithm for classification tasks. We will first briefly explain the principle of logis-
tic regression [Fan et al., 2008], then we will use Tf-idf representation to classify
the text intent by logistic regression classifier in Scikit-Learn.

As in any regression problem, the goal of logistic regression is to fit labeled
data (x;,y;) with a function y = f(x), by choosing the f from a predefined class
of functions {f,}. For example, linear regression will fit vectorial data with a
linear function. Here, we have a classification problem, so the x; are vectors in
a space R? but y; are in the discrete set {0,1}, and the model function f gives
to the vector x the label closest to f(z). Given this, linear functions would not
give a good fit. Instead, we want functions that are close to 0 in a half-space
and close to 1 in the other half-space, as in figure [3|

This can be achieved using the sigmoid function S(t) = ﬁ The class of

functions we consider is then

1

Juwp(z) =S(w-z+0b) = [ pp——
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7

Figure 3: The sigmoid function is suited for binary classification. Created with
GeoGebra 6.

where w is a vector of the same dimension as z and b is a scalar. Note that this
is classification by hyperplane: the parameters of the model to compute decide
the position of the separating hyperplane.

Since the sigmoid function outputs a value in the interval [0, 1], we can inter-
pret it as a probability: we will say that the model of parameters (w, b) assigns to
the input « the label 1 with probability f,, »(x) and 0 with probability 1— f,, 5(x).
Then given an observed data (z,y) (with y € {0,1}), the data corresponds to
the model prediction with probability P(y | z,w,b) = fup(x)Y(1 — fus(z)) Y.
Assuming independence between observation, the likelihood that the model will

output all of our data (z;,y;) becomes

Liw,b) = [TPy: [ 2i,w,8) = [T fuwo@a)” (1 = Fup(wi))' ™

1 Yi 1 1—y;
= 1;[ (1 + ew'mib> (1 + €w~mi+b>

and our objective is to find the parameters (w,b) that maximize this likelihood,

or equivalently that minimize the inverse loglikelihood
—log(L(w,b)) = Z yilog(1 + e =) 4 (1 —y;) log(1 + eV @i th)

. This is also called the cross entropy error. Generally, people also add to this er-
ror a reqularization term in %(Hw||2+b2) where C' is a scalar hyperparameter[Ng and Jordan, 2002],
aimed at preventing the parameters (w, b) from becoming too wild (to prevent

overfitting). The more C grows, the less this has an influence on the result.
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The minimization problem is typically addressed by a gradient descent tech-
nique: starting from a point (w,b) in the parameter space, the gradient of the
cross entropy error in this point is computed, then the point is updated by a
small increment in the direction opposite to the gradient. After enough itera-
tions, a local minimum should be reached.

In our example, we have 8 intents to classify, so it is a multiclass classification
task and not a binary one. There are several approaches to this problem. One
is to pick out a class k and produce a binary logistic regression model f,, s,
that should output 1 for data of class k and 0 for data of class different than
k. This can be done for each class, so that we get one model f,, », per class
k. To merge them together, we simply decide that an input vector is mapped
to the class of highest probability, that is to k such that fy, s, (x) is maximal.
This method is called one-vs-rest logistic regression (OVR), and is naturally
best suited for problems where each classification problem is independent.

Another common approach is called multinomial logistic regression. Its idea
is to model the probabilities of each class k (taken from a set {1,...,K} as
proportional to ek % where the wy, and by, are the parameters of the model.

Therefore, according to the model, the probability that the class of x is j is
e'wk-z+bk

W, so the likelihood to maximize is
=1 )

L83 = ke =+
leil ewr et

ZK
L(wl,bl,...,wK,bK):H k=

with also possibly a regularization term %(23 [Jw;* 4 b3).
For our work, we use the function LogisticRegression from Scikit-learn,

and we tune the following parameters using GridSearchCV :

multi class the approach to multi-class logistic regression, that is ’ovr’ or

‘multinomial’

solver the algorithm to use in the optimization problem when training the
parameters. Note that only ’newton-cg’, ’sag’, ’saga’ and ’lbfgs’

can be chosen for multinomial loss, and *1liblinear’ is for OVR
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C inverse of regularization strength, this is the scalar that appears in the reg-

ularization term.

According to the Grid Search result, the optimal hyper-parameters are:
multi_class=’ovr’, solver=’liblinear’, C=10. It gives a best score on
test set of 0.532631578947.

There is also an interesting phenomene here: the three sentences that we
analyzed as examples of misclassification by the naive Bayesian algorithm are

again incorrectly labeled.

LR
index | speech intent
prediction
2442 So I made a guess by Pa Kua, I poisoned P10. ph defense
Why? Because you P12 and P2 both have made a strange
2365 attack | ph

speech.

I am a Witch, last knight the werewolves killed P3, T used
1082 protect | attack

my power to protect him.

However this time sentence 2442 is classified as defense. It might be ac-
ceptable because "I poisoned P10" could be seen as equivalent to a personal
statement of "I am a Witch" since only the Witch has poison, and the dec-
laration of one’s own good identity could be labeled as defense. Maybe this
sentence is itself too ambiguous.

According to Scikit-Learn’s official documentatiorﬂ the support vector ma-
chine algorithms are supposed to have good performance in text classification
tasks. Since the results of naive Bayes and logistic regression are very close, we

will try SVM algorithm in the next part.

2.2.a.iv  Support vector machine Another variant of classification by hy-
perplane is the support vector machine (SVM)[Ng, 2018|. Like logistic regres-
sion, an SVM will solve a binary classification problem by drawing a hyperplane
that best separates the two classes. The major difference is that the SVM draws
the hyperplane so that it is the farthest possible from any data point, ie there is

Bnttp://scikit-learn.org/stable/modules/svm.html
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a widest possible "no man’s land" along the hyperplane and without any data

point inside, as in figure [4

X_ A
2 “

Figure 4: The SVM tries to separate the to classes with a largest possible strip.
Source: https://commons.wikimedia.org/w/index.php?curid=3566688

The result is that only the data points close to the hyperplane (i.e. at the
"boundary" of their class) are taken into account; those data points are the
so-called support vectors. Hence the points far from the "boundary" (i.e. well
"inside" their class) do not influence the choice of the hyperplane, while in a
logistic regression all the data points would have some influence.

More precisely, given data points z; € R? with labels y; € {-1;1}, we want
to find an hyperplane w - x 4+ b (with normal vector w) such that all the data
points are correctly classified, i.e. sign(w - z; + b) = y;, and where the minimal
distance myz(w -x; + b) of a data point to the hyperplane is maximized. We
can rescale w and b such that the minimum of the y;(w - z; + b) is 1, then

the distance to maximize is HTIH This corresponds then to the minimization
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problem
e . 1 2

minimize 5 |jw||

subject to  y;(w-x; +b) >1
However, the problem is not always solvable : if the two classes are somewhat
mixed together, there may not exist a hyperplane that separates them perfectly.
Therefore we have to allow for some error (data points x; wandering at some
distance —myi(w - 2; + b) at the wrong side of the hyperplane), and penalize

them using a squared hinge function

0 ifeE>0
sqhinge({) =
£ ife<0

Our problem becomes

minimize % ||w||2 +CY, &?

subject to  yi(w-x;+b)>1—¢& and & >0

where C' > 0 is a regularizing parameter. This formulation allows the problem
to be solved with Lagrange duality.

The choice of C' is essential as we can see in the figure

Xy X2
0 % % X o % % X
0 0
0 X >><< 0 X )><<
X X
o) Cq
X1 X1
lowe large
Figure 5: Influence  of  the  regularization  parameter C.
Source: https://stats.stackexchange.com/questions/31066/

what-is-the-influence-of-c-in-svms-with-linear-kernel/159051
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When C is high, it becomes very important to classify as many data points
correctly as possible, at the cost of a small distance between points and the
hyperplane. Conversely when C'is low, classification errors do not matter much
if it can allow for a wider gap along the hyperplane (the error stemming from
a few points in the gap is driven very low by C'). To summarize heuristically,
setting a lower C' avoids overfitting at the cost of fidelity to the data points.

In our work, the SVM is implemented with LinearSVC from sklearn (hence
the default squared hinge error instead of the more common hinge), with the
default one-vs-rest strategy for multiclass classification. The hyper-parameter
C' is tuned with GridSearchCV.

We found that C=0.3 gives a best score on test set of 0.547368421053. This
is the highest accuracy compared to naive Bayes and logistic regression, but

even then we found the three example sentences to be still incorrectly labeled:

. X SVM
index | speech intent
prediction
2442 So I made a guess by Pa Kua, I poisoned P10. ph defense
Why? Because you P12 and P2 both have made a strange
2365 attack | ph

speech.

I am a Witch, last knight the werewolves killed P3, I used
1082 protect | attack

my power to protect him.

The misclassifications here are identical to those of logistic regression (in
particular for sentence 2442)
Here are some sentences that are incorrectly classified by logistic regression,

but are correctly labeled by SVM:

X intent / LR
index | speech
SVM pred. | prediction

2639 eI, EEMALE, —ER—KHEKE - protect attack
AEUA 2T 12 SHAE . 5 SRS RAM

3670 defense attack
ESAiDE=S D

2218 | IRESMBAUEREOREETR T, fiSdk, AR . attack ph

In English:
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intent / LR
SVM pred. | prediction

index | speech

His perspective of view, plus his attitude,
2639 protect attack

he must be a Seer

Don’t say that you judge my identity according to
3670 Y you judse my Y & defense attack
the speech of P12 or the one of P5

The reason that you verified him is completely out
2218 attack ph

of the point, I can accept that he verifies me though

The SVM seems to perform better than logistic regression on the unequivocal

sentences like 2639, though not specifically better on the ambiguous one.

2.2.b With contextual features

The best results of the above algorithms are around 53%, while normally
they would do a good job in text classification tasks. We suppose that it is due
to the lack of consideration of context features.

Many text classification tasks aim to classify the topic of the text or the
sentiment of a review. In this case, using word Tf-idf features may represent
the sentence appropriately enough because the topic or the sentiment is highly
related to the words that we use in the sentence. The order of the word or the
so called context features, might not be so determinative to the task.

However in our case, when we sorted the most correlated words for each
intent, we found that many words overlap across intents. Therefore it might be
a good idea to take context features to consideration.

To this end, we can try to consider a sentence as a sequence of words instead
of a bag of words. This representation is especially suited to a recurrent neural
network, as it processes the input sentence word by word and reuses former
information recursively during the propagation, thus keeping some measure of
the contextual information.

The words of the sentences, as parts of the input in the neural network, need
to be represented as vectors. We could simply take the dimension to be the size
of the vocabulary and have a word be a vector of zeros and a one, however this

makes the dimension unnecessarily big. Instead, we can use a word embedding,
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that is a way to represent words as vectors in a low-dimensional space while still
retaining the semantic relationships between them through the geometry of the

space.

2.2.b.i word embedding To talk about word embedding, we would first

like to begin with the concept of a simple Neural Network [Hansen and Salamon, 1990].
A neural network is made of neurons which are connected through computations
where informations flows (weights for out computational model), and when we

train a neural network we want the neurons to fire whenever they learn specific
patterns from the data. The fire rate is modeled using an activation function.

Neurons in the networks are arranged in layers. It will have an input layer
ho which just represents the input information as a vector z and passes it to
the next hidden layer h; "almost" linearly: the layer hi gets the result of the
product Wihg where W7 is a matrix. An activation function g; is then used
on this result, so that ultimately the information got by h; is non linear in the
input. This is to prevent the whole network from being linear as composition of
linear steps (the hidden layers would then be pointless). The activation function
could be the sigmoid we introduced before, it could also be other functions. The
information of hq is then passed to the layer hy in a similar fashion and so on. At
the end of the hidden layers we have the output layer. In this layer, an activation
function like ‘softmax’ (similar to sigmoid) is used to get the probability of each
class and then chose the one which has highest probability.

As an example, consider the following word prediction problem in [Bengio et al., 2003|.
Suppose we have a text corpus with a vocabulary of size V. Our task is to pre-
dict a word w; in a sentence given the previous and following words w;_1, w_s,
Wy+1, Weta, ete. This is a classification task: wy is the class that we would like
to classify the given words into.

We will achieve this task by training our data through an one-layer neural
network, represented in figure[f] First, we input the context words using a one-
hot encoding. We then set the hidden layer to be a matrix of dimension n x m,

where the horizontal length is an integer m and the vertical length is the number

34



i-th output = P(w; = i| context)

softmax
[ X ) .- 000 )

. \
most| computation here \

tanh

shared parameters
across words

index for Wy, index for w;_» index for w;_;

Figure 6: Prediction of a word based on the context. For our explanation we
can ignore the second layer with tanh. Source: |Bengio et al., 2003|
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n of input context words. It is computed from the input layer using a matrix C
of dimension m x V : the i-th lign of the hidden layer will be is C'(w;) = Cu;
where x; is the i-th input one-hot vector (corresponding to w;). Note that for
this first layer we do not use an activation function, this part is linear. From
this we compute the output layer (y1,...,yy) of size V, and we apply a softmax
function to assign to the j-th word in our vocabulary the probability ﬁ
that this word is the word w; to predict.

After this neural network is trained, we get in particular the matrix C, of
dimension m x V of trained weights for the first layer. This gives an embedding
of our vocabulary into the vector space R™. Such embeddings can retain many
interesting semantic properties, as explained in the introduction section [I.2]

Nowadays, people publish many works of pre-trained word embeddings for
many languages based on different corpora, or with different models and vector
dimension. We chose the Chinese word embedding |E| based on Chinese Quora
with the state-of-the-art model word2vec. Compared to other corpus, we think
that this corpus is a good compromise, having not too many oral characters nor

being too serious like People’s Daily.

2.2.b.ii Recurrent neural networks In the previous part, we introduced
a simple neural network architecture. In fact, the neural network family is huge,
with feedforward neural networks like perceptrons, back propagation networks
and convolutional neural networks, as well as feedback neural networks like
recurrent neural networks (RNN).

The RNN are proved to have better performance in NLP sequential tasks
thanks to their recurrent property [LeCun et al., 2015]. The basic concept of
RNN uses the time component, and is shown in figure [7]

The basic graph of the network is represented by the one on the left, and its
unfolding in time is the one on the right: it is comprised of one hidden layer s
which is recursively updated (so it is in fact multiple hidden layers sg, s1, etc).

The network is fed the input x by successive bits x;, and the layer s is computed

14nttps://github. com/Embedding/Chinese-Word-Vectors
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Figure 7: An RNN is represented by the graph on the left; unfolding along the
time component gives the graph on the right. Source: [LeCun et al., 2015|

from the last input z; using weights U and from the previous iteration s;_; of
itself using weights W, with an activation function that could be softmax, tanh
or rectified linear unit (ReLU). At each iteration, an output o; can be produced
using weights V. Since the matrices U, V and W are the same at each iteration,
we can say that the network keeps previous information, as if having memory.

For general NLP applications, we can see x as a sentence, and z; is the
embedding of the t-th word in x. In this setting, the property of retaining
memory can be translated by saying that the contextual features are taken into
consideration.

In the real-life implementation, people often use two variants of RNN: LSTM
(Long Short Term Memory) and GRU (Gated Recurrent Unit) [Chung et al., 2014].
We will use the LSTM variant, that we first briefly explain.

The invention of LSTM addresses the problem of vanishing and exploding
gradient [Bengio et al., 1993]. Basically, this problem arises in the original RNN
models, where an earlier input will have less influence compared to a closer input.
So the output is often taking more information from new input, that’s to say
the RNN cannot have a long term memory.

LSTM then introduces a concept called constant error carrousel (CEC), this
is to make the ideal activation function a linear function. So letting W be
the identity and the activation be f(x) = x will keep the error constant. We
then have s; = s;—1 + Uz;. But then there will be the problem of updating
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the U and V confliction. To solve this problem, people artificially create two
gates: an input gate gy, and an output gate gout. Then s; = s;—1 + ginUxy,
and oy = goutSt. Furthermore, people have recently made many improvements
[Chung et al., 2014] like adding a forget gate to memorize and forget the CEC
in self-connection.

In this project, we used the LSTM module in Keraﬂ We used an LSTM
with self-trained word embedding, another with pre-trained Chinese word em-
bedding and set trainable or not. There are many hyper-parameters that should

be taken into consideration:

batch size the number of samples in a time when training, called batching

epochs: the epochs of training

embedding dim the dimension of embedding vector, that we set to be the

same as the pre-trained word embeddings (300)
activation the activation function at the end of the hidden layer

dropout regularization method where inputs to LSTM units are probabilisti-

cally excluded from activation and weight updates while training a network
recurrent_dropout dropout for recurrent connections
optimizer the optimization methods: could be SGD, Adagrad, etc.

Ir the learning rate in optimizer, a big 1r makes gradient descent go at a big

pace

Through a grid search for the hyper-parameters, we obtained that the opti-
mal parameters for the LSTM with self-trained word embedding are:
batch_size=100, epochs=20, embedding_dim=300, activation=’sigmoid’
dropout=0.4, recurrent_dropout=0.4, optimizer=’adam’, 1r=0.01.

As we introduced in the corpus statistics section we find that the

average sentence length is 20, and 75% of sentences have fewer or equal to 27

15https://keras.io, version number: 2.0.6
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words. We present the test accuracy with the hyper-parameters above and with

the input sentence length padded into 15, 20, 30, 40, 50 as below.

self-trained pretrained trainable
10 | 0.410526316417 | 0.389473690798 | 0.412631575999
20 | 0.446315785772 | 0.471578950945 | 0.450526320621
30 | 0.461052637351 | 0.48421051314 | 0.458947369927
40 | 0.465263153377 | 0.498947369425 | 0.46736842237
50 | 0.448421040648 | 0.442105260335 | 0.433684207891

From the table we can see that, with the same hyper-parameters, the pre-
trained word embedding gives best performance to this task. Compared to other

input length, padding each sentence to 40 words generally gives the best results.

2.2.c Comparing the results

The benchmark performance of the classifiers we implemented in the previ-

ous parts is as below:

support vector machine + Tf-idf 0.547368421053

Multinomial Logistic Regression + Tf-idf 0.532631578947

0.530526315789
0.498947369425

naive Bayes + Tf-idf

LSTM + pretrained word embedding

LSTM + pretrained word embedding + continuous training | 0.46736842237

LSTM + self-trained word embedding 0.465263153377

The support vector machine with Tf-idf gives the best results, with a score
of 55%. In the following parts of our project, we will then keep it as our intent
classifier.

If we use a random classifier (i.e. with output independent of the input),
the optimal way is to always predict the most frequent intent attack (which
occurs for 33.8% of the corpus sentences), and the random baseline accuracy
would be 33.8%. Thus our trained classifiers are a net improvement from the
baseline. Also, previous analysis pointed out that many misclassifications stem

from data that was annotated ambiguously (where another intent could also
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have been annotated), so our best score of 55% is in fact a lower bound of the
"real" effectiveness.

One disappointment however is the LSTM: compared to the other algo-
rithms along with Tf-idf representation, the neural network is not as good as
we expected. It seems that even with the advantage taking into consideration
the context features, the classifier does not perform well. There are still many
things to do which might bring some improvements to the RNN, such as add
more LSTM layers, collect more data or add syntactical features. In this case,
the hyper-parameters should also be re-tuned. Given more computation time,
we could follow this lead to probably get interesting results.

In the next parts, we will focus on text meaning understanding in favor of the
syntactical features retrieved by HanLLP then summarize all input information

for further use.

2.3 From classification to comprehension

In the previous parts, we used several algorithms to classify the main intent
of a sentence, but we still do not know what the meaning of the sentence is. If a
sentence expresses intention of attacking someone, we would like to know which
person is the target. Besides, since the classifiers always give a score of about
50%, we will not rely only on the intents that are labeled. Instead, we will take
syntaxical considerations in order to understand the meaning of a sentence.

At first, we will introduce a Chinese language processing library HanLLP Eto
parse the sentence. In the next step, we will explain how we use the dependency
information, along with the intent label to extract the meaning of the sentence.

Notice that, from this step, the information is no longer totally independent
to each other. The sentences of a player in a speech turn will be finally summa-
rized and then based on that, the attitude of all players in a speech turn will
also be summarized.

Hence we cannot process them in disorder such as what we do in the clas-

16https://github.com/hankcs/HanLP
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sification task. We should choose a complete game to process its turns. The
S1E101 game is chosen to be the test data. By concern of not leaking the test
data in the train data, we use other episodes’ data as train set and we use only
the hyper-parameters that are fine tuned in section [2.2] to retrain a classifier of
intent, then apply on the test file. The classifier LinearSVC is chosen because

of its good and fast performance.

2.3.a Who attacks whom

In this part, we will first extract from each sentence its basic "subject verb
object" structure. We will then, secondly, use this structure, combined with the
classifier produced in the previous section, to extract some explicit information
conveyed by the sentence, such as "who attacks whom", "who protects whom",
"who defends himself against whom", etc.

There are basically two ideas to realize this second extraction: either we use
the sentence intent labeled with the classifiers in 2.b as the verb "attack" or
"protect” etc, then use the subject and object retrieved as "who" and "whom";
or we relook the verb retrieved to see whether it corresponds to the labeled
intent. Indeed in some cases, players use specific verbs (cf. glossary|B|) that give
an explicit indication of their intent. These indicated intents might be different
to the labeled ones. As we have said before, the accuracy of our classifiers is
always around 50%, we would better not to only rely on the classifiers to take
labeled intent as meaning verbs, so these two ideas will both be used in the
section.

In this part, we will use the library HanLPE to parse the dependency of
a sentence. HanLP is a powerful open source tool that focuses on Chinese
processing in many basic tasks like Chinese word segmentation, POS tag, named
entity recognition, dependency parsing, etc, as well as more complicated tasks
like keyword extraction, automatic summary or text classification.

The reason that we chose HanLP is its convenience and rich abilities. We

"https://github.com/hankcs/HanLP, version number: 0.1.41
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had used jieba{ig] for Chinese word segmentation for its fast and satisfying per-
formance, and it allows an user defined dictionary to which we can add new
words to the segmentation model. However, jieba can not parse the syntax of a
sentence. Other classical NLP libraries like NLTK and Stanford CoreNLP get
more complicated with an user defined dictionary and do not use the results of
the jieba segmented sentences in their processing. Hence HanLLP was the best
choice for us.
The result of a sentence dependency parsing, for the example *F4% 15 5,

flZ2FKAEAR" (in English: "I verified P5, he is a villain") is as below:

Ind | Text | Lemma | POS | POS | Dependent | Dependency
1 F ¥ r rr 2 FIEXR

2 5 B v v 0 ZOK T

3 g g u ule 2 LHTANR &
4 5 5 m m 5 KA

5 5 5 q q 2 PIERA

6 , , wp W 2 RS

7 fib fib T T 8 FHXA

8 = = v vshi | 2 FINRZR

9 ES K q q 10 EFRRA
10 | &% | 8% n n 8 EE KR

In figure [8| we translate the Chinese in literal English so that it is more clear
for the readers.

It is a ConLL format object. The first column is the index of word, the second
one the text, the third one its lemma, the fourth and fifth one its nature (POS
tag), the seventh is the index of the word from which this word depends, and the
eighth column gives their dependency relation. One can consult the complete
documentation of the labels’ meaning. Here we will focus on the dependency
relation.

According to this table, the sentence could be seen as composed of two
phrases. The head of the sentence is "verify", but since there is another verb "is"
in the second phrase, it is labeled as "coordinate" to the head verb. Respectively,

their subjects are 1 and the 7. Their objects are 5 and 10. The word "P5"

18https://github.com/fxsjy/jieba
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1 (24 2 subject-verb EiEX£A2
2 verifi- 3§ 0 head &/ k %

3 edT 2 right adjunct A0~ %
4 55 5 attribute & FP3% &

5 number 5 2 verb-object FIEXF

6 ) 2 punctuation {285

7 he ft 8 subject-verb EIEXF#

8 is 2 2 coordinate F%lx %

9 a gk 10 attribute EHX %

10 villain& % 8 verb-object IEX %

Figure 8: English translation of the ConLL output example by HanLLP

is segmented as 2 words in Chinese, where "5" is the object and "5" is the
attribute.

For each sentence, we will construct a list keeping the most basic syntaxic
information , giving two places for verbs, two places for subjects and two places
for objects :

DIDRFR D RR D FEERR D FEERR IEXRR O BIEXR]
[’verb’,’verb’,’subject’,’subject’, ’object’, ’object’]

If we have a word labeled as head verb in the sentence, we then replace the
first verb’ in the list with the word. If we find its coordinate verb, we then
fill it to the second place for verbs. If there are still more verbs, we ignore them.

For the subjects, besides the words labeled as subject-verb dependent to
the head, we also look for the word with coordinate relation to the subject
that we have found. If there are more than 2 subjects, we ignore the latters.
The objects are treated in the same way.

In our example, we get a list like this:

D, 5 TR, FIERR BB, 5]
[’say’ , ’number’,’Seer’,’subject’,’jinhuiliu’, ’number’]

We then store them in the dataframe as a string, under the "syntax" column,
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as shown in figure [9

speech syntax
4367 MERER—TERR  ERMENR7S7S  BRSSSS WS MER TBXA BERR S
4368 IERERME L HBEMIR125 » 1252 RAEK 22 FRBLES 2K
4369 g FRORFR EERA EBXRAR TEXR TERFR
4370 FERHN125RK  RERK » RRBEFERTFELFLT » RRG2STWSRRSEIN 2 2 EE R HM 2K
4371 BRIEHIBISB—IKERNS RIS RR/BORA K S BB
4372 IEMNROSREMSRIGRIFIFH - MRIRZISBINS RBEMEMIRFER 5 2 MR 7 8 MER
4373 EABEES REZERMENEEERENIS125 S ROKRA BB RS £EXA
4374 12SRENZEKMEMBABEAE - BOSHB—RABNBAEB LR - INISELARATSER  &E.. £ RORR SKhE fh B SR
4375 FIMOSHERUAEE » WA » (R MIBRKGFH » HOABKRISRIZ2 LR B RKYF R AIE B EIEXAR

Figure 9: The basic syntactic structure extracted from the sentences.

Now, finally, we transform this "syntax" information into explicit informa-
tion such as "who attacks whom", "who protects whom", "who defends himself
against whom", etc. We proceed as follows: if we find the verbs in the depen-
dency structure to be specific terms and the labeled intent corresponds to them,
we have no doubt about the intent meaning, then we look at the object - it is
generally the player number, we then take it as the target. If we find the verbs
to be specific terms but the labeled intent does not correspond to them, we
take the specific terms meaning as the intent meaning then retrieve the player
number as the target. Else if we do not find specific verbs, we then rely on the
labeled intent and retrieve the target player number. The complete set of rules
can be found in the code on Github.

This information is encoded in a dictionary, whose keys are the actions (such
as "attack", "claim as Seer", etc.) and the values are the objects of the actions
(represented as list of player numbers). For example, for the sentence "Yesterday
I checked P12, I give him my jinshui", the information to be extracted is that
the speaker claims P12 is good (he "IAZF A" him), and more specifically this
claim is through jinshui (i.e. the speaker, who previously claimed to be the Seer,
says he used his special ability to find P12 is good). Therefore the dictionary
corresponding to the sentence is {>INTF A: 2:[712°],°&7/K: »:[212°]. In

general, all the possible keys are:

HiA: claim oneself to be of ... identity, the value is a list which could
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have identities like "%ﬂ”,"ﬁ”ﬂ'ﬁ?}\","ﬁi%%”,"ﬁ@","’%% £ %H”l?}%&
" g A SE I " E R ("divine villager", "ordinary villager",
"good",

"Seer", "Witch", "Ancient", "Assassin", "Hunter", "Savior", "Idiot", "were-

wolf")

ERI:  the order of succession as Captain, the value is a list containing the
player numbers to which the speaker will give the Captain title after check-
ing

%i:  to check, the value is a list containing the player numbers that the speaker

wants to check or recommends the Seer to check

AWAE: not sure, the value is a list containing the player numbers that the

speaker suspects but not for sure

INEFAN:  recognize his good identity, the value is a list containing the player

numbers that the speaker trusts to be good

IAPRA:  sure of his bad identity, the value is a list containing the player num-

bers that the speaker thinks for sure to be bad

AXFFF: not go well with. . ., the value is a list containing the player numbers
that are in opposition with the speaker and so that the speaker has to

defend himself against those players

%7K: sure of his good identity proved by Seer (this identity is called jinshui,
the Golden Water), the value is a list containing the player numbers that
the speaker thinks for sure to be good identity because the player trusts

the Seer too

TiEXK: recognize his Seer identity, the value is a list of the player numbers

that the Speaker trusts or trusted as Seer
L Ak:  recognize her Witch identity

PB173:  recognize his Assassin identity
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BEKE:  recognize his Ancient identity
FEA: recognize his Hunter identity
Hfi: recognize his Idiot identity

SFI:  recognize his Savior identity

Notice that, the dictionary is for one single sentence, we will then combine
them latter.

Here we just give a screenshot of the speech, syntax, label and attitude
dictionary of one sentence:

speech: FASRFGIH—TFEMAN, BEHAKKNTIS7S, BHsS5S

syntax: "5 Msx FEXR BHR S

label: to_check
attitude dictionary: {'Z#®': ['5', '7'], 'BiA': ['WSER']}

We apply this function to every sentence, as shown below:

player speech syntax label abstract
467 28 AR — TR BEMERTS7S  BRSE6S S MER LEER SRR S to_check | DROMI[S,7], E‘;g
a8 2% VERERR: ERERR122 - 10812 BAEK BRERMEBTEK  protect (INFAL[12], 'Rk [12])
_— g BORR XA TEAR TEAR 0
FiRxR
a0 ss EERUNIRSIA MRS EREREEFETLT - RXESHE SR EE M ak  protect P
RREFAL
wann se (ERERIEIS R —KEWTERION REMOXARS R protect (INFA:[9], TER: [91)

In the following part, we summarize the attitude dictionaries (here the "ab-

stract" column) to have a bigger view of the game situation.

2.3.b Speech turn summary

In this part we will summarize the speech of each player for each turn. As
we have introduced in section the csv file is ordered by speech turn in the
column "timestamp", then by player number in the column "player". Hence we
define a function to aggregate several attitude dictionaries from single sentences
in the column "abstract" to one for each player and store it into column "0".

For the reading convenience, we display here only the columns "timestamp",

"player" and "0", as in the figure [I0]
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timestamp player [

{IMFA: T2, 2, 2,2, ', '5', 2", 5", '2', '8!, 2", '2', '/, '2', 5", '2", '2', '2', '7", '5", '2', '9", '2'], 'RAMS 1 ['9, '2', '9'], ‘BN [$FA], REE": ['5],
;19,57

°

captain_election

S
i

captain_election

(IAFAL T2, 112!, 112!, 09, 12, 12, '8, 2Y, 19, AR [}

~

captain_election

o

(R (5

71 BN [RERT AFAL[12], &K (127

@
o

captain_election {IMFA 12,112,991, 191, TAFAL 12,9, '9', '3

»

captain_election

©

{IMRAN 2!, 112!, 18", 2", '8, 121, ‘AR 6, 12, ‘51, 'REEE" [, ‘W [11','5T}

5  dayl_speech

o]

CINFAL[2], Regfe (2, 121, ‘B [0, '8, SAFAL 8,5, 12!, '3, 7, 7,13, 17, 7, 2, 13, R 4T}

6  dayl_speech CMRAL 5,5, 6, '8, 7,9, 5, 2%, '5, 4, '3, 2, 12 5, 5, SAFAL [9), 5, T

7 dayi_speech

IS

(RIS 9], NFAL 9,9, 9, 7

'8 BN TSR, TSR], AFA

T RER [T

@

8 day1_speech {IMRAL [T, 19,19, 29, 12, '2Y, 9, 112, 112, '2',112', 12,9, 121, AR 19, 6", T, 1121, AR [}

9  dayl_speech

I T I I S

{IAFAL 9, 12, 7,19, 19", 112, 19, 17, 81, 19", 2!, '8, TTRIE R 9], TARA 8, 2!, 7, 12, B 8, 121, 'FERRE " (6]
@
(R L SARRAL 19, 112, 2,91, 19 2, 9, 112, 112, 112, 127, SARFAT [}

10  dayi_speech

o

11 dayl_speech

@

Figure 10: Attitude dictionaries are put together in column 0.

We found that in index 10, player 5 does not have summarized dictionary,
that is because he is forbidden from speaking in this turn. This information is
stored apart in the behavior record about which we will explain more details in
part 3.

The format of dictionary is still too noisy for the analysis. Besides, there
is a lot of information redundancy. That is because during a speech turn, one
may keep attacking a player with several sentences.

We then come up with the design of a "personal perspective pattern", that is
to say, we will make a list of 13 items, for which the original value is "unknown".
The list represents the identities of all the 12 players in the game, in the point
of view of a player. The identities are the key in the summarized attitude
dictionary. In Python code, the index of a list begins from zero; for us the
second item, whose index is 1, will represent P1; the third item, whose index is
2, will represent P2, etc.

For example, if the personal perspective pattern of player 2 is
["UNK", "UNK", "FEZ", "UNK", "UNK", "3&", "UNK", "5&",

"UNK", "UNK", "UNK", "UNK", nrrkn]

["UNK", "UNK", "Seer", "UNK", "UNK", "Check", "UNK", "Check",
"UNK", "UNK", "UNK", "UNK", "jinshui"]

this means that P2 sees himself as the Seer, wants to check P5 and P7, and

recognized P12 as jinshui.
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We should pay attention that the keys of the attitude dictionary are not
always at same level. For example, one may recognize another as "good" but
also more specifically as "jinshui" (the Golden Water, the one who is checked
by the Seer and verified as good). Here "jinshui" is more precise than "good",
hence we will take "jinshui" as useful information instead of "good".

Another point to pay attention is that, a player may recognize another one
as "good" then change his mind to think of the player as "bad" (i.e. wolf) or
conversely. But since we summarize his speech in dictionary format, we do not
have the information of which identity is his final decision. Fortunately we have
the list of "good" and "bad", and in each list, a player may occur several times
because the speaker will talk about this player several times. We then count
the occurence of the player for "good" and "bad" respectively, then choose the
most frequent one as his identification. It is not a completely correct solution
but it is acceptable.

The final information retrieved is like below:

timestamp player 0 pattern
0 captain_electon 122 {IAFFA: 2, 12!, '2', '2', 5", 5", 2", '5... [UNK, UNK, IAFA, UNK, UNK, IAYFA, UNK, JATFA, UNK, ...
1 captain_electon 12 {IARA 2,12, 112,19, 2", 2", '8, ... [UNK, UNK, ASFA, UNK, UNK, JATFA, UNK, UNK, UNK, ...
2 captain_election 25 {BRR:[5, 7] 'BIN:[FER] AFA:[12.. [UNK, UNK, FI=%, UNK, UNK, 38, UNK, 3, UNK, UNK,...
3 captain_election 5% (IAEA:[2,12),'9', 9], TRER" (9], ... [UNK, UNK, SASEA", SAFFA, UNK, UNK, UNK, UNK, UNK...
4 captain_election 95 {SAFRA[2), 112, 5", 2", '5", '2'], "R [UNK, UNK, IAFFA, UNK, UNK, JATFA, UNK, UNK, UNK, ...

5 day1_speech 125 {INFAN 2], A3 12,21, ‘B 9, [UNK, UNK, IAFFA, IAFRA, REBZE, IAFRA, UNK, IAFRA, UNK, ...
6  dayl_speech 15 {IAFA 5, '5', 6", '8, - [UNK, UNK, SAFRA, IAFRA, AR, IAFRA, IARA, ARA, IASFA, ...
7 day1_speech 25 {3 9], IARA L[], 13,19, 7", 5. [UNK, UNK, TREZ, IATRA, UNK, IAIRA, UNK, %K, UNK, iA...
8  dayl_speech 32 (SAMFAL[T7, 19,9, 12", 19, "2, 12", 9., [UNK, UNK, AR A, UNK, UNK, UNK, SASFA", SAFFA, UNK...
9  dayl_speech 45 (IAFA 9, 2,7, 19,19, 112", 19", . [UNK, UNK, IAFA, B, UNK, IASFA, RIEE, IMFA, UNK, FIIE...
10  dayl_speech 55 i3 [UNK, UNK, UNK, UNK, UNK, UNK, UNK, UNK, UNK, ..
1 day1_speech 62 {30, SAFRA 119, 112, 121,19, 19", "2... [UNK, UNK, IAJRA, UNK, UNK, UNK, UNK, UNK, UNK, ...

In the next part, we will try to guess which one is most likely to be the

werewolf, with help of the behavior information.
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3 Behavior processing

What is behavior in the game 7 As we explained in the game rules section
in Day 1 there is at first a captain election, the elected captain will have a
1.5 weight in the subsequent votes for execution. After the captain election, the
Moderator will announce the death information in Night 1. Then the Captain
will choose a player to start the speech tour. After everyone has spoken, all
the players will vote for someone’s execution. All these information, including
election results, votes, captain’s decision, along with the werewolf’s suicides (if
any), are considered as behavior.

Novice players often have nothing to talk about, while in this professional-
grade game, players often have too much to say. In fact, when we study the
content and meaning of the speech, we found these professional players tend to
analyze the possible character of one player by three aspects: his statement, his
behavior and his general attitude. For the statement, besides the meaning of
the sentence, the expression that he uses and even the emotion that he shows
also count as very important. As for the behavior, let’s provide an example.
Suppose in the captain election, a werewolf A pretends to be the Seer and he
declares having identified werewolf B as bad, and there are two other candidates
including a villager and the real Seer who declares that A is a werewolf. If the
werewolf B votes for the villager to be Captain, this behavior makes B to expose
himself, for the reason that a villager will certainly vote for the Seer who declares
bad the Seer who declares him bad. This shows how the behavior is sometimes
revealing. The general attitude that the player exudes is the last thing that we
are interested in, it is useful only when the game is face to face or the players
know each other. We often talk about the normal performance of someone and

the abnormal aspects that he has in a particular game.

3.1 Behavior record

Here we give the list of behavior features that might be taken for consider-

ations in the future prediction of player’s character, ordered by the turn. We
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take the game S1E101 as example.

Initial parameters:
e number_of_players: 12
e part-to-kill: True

e character_pattern: {’n_villager’: 4, ’n_god’: 4,
’ordinary_werewolf’: 4, ’white_wolf’: 0, ’seer’: 1,
’witch’: 1, ’hunter’: 0, ’idiot’: 0, ’ancient’: 1,

’assassin’: 1, ’savior’: 0}
e witch_can_save_herself: True

e character_distribution: [’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’,
PUNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’, ’UNK’]

e player_alive: [‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’,
‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’,

‘alive?, ‘alive’]

The character_pattern is the game pattern. It is represented by a dic-
tionary where the key is a character (or role) and the value is the number of
players having that role.

The character_distribution is a list which contains 13 items. The item
represents the known characters, where the index of an item is the number the
corresponding player player. We don’t have a "player 0" so the first item of the
list, which has index 0, is just unknown and serves no purpose.

Notice here that, the character_distribution list is different from the
personal_perspective_pattern from the previous part. The character_
distribution represents the reality, it can only note the certainly known play-
ers’ character such as a suicided werewolf, a Hunter who fires or an idiot who is
executed but can stay in the game.

The player_alive also has 13 items. It represents the life status of each

player. In the initial status, everyone is alive.
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Captain election:

e candidates: [‘1’, ‘27, ‘57, ‘97,6 ¢12°]

e non_candidates: [‘3?, ‘4, ‘62, ‘72, ‘87, “10°, ‘11°]

e speech_order: [¢2’, ¢5’, ‘97, ¢12’, ¢1°]

e still_candidates: [¢2’, ¢9’]

e order_succession_captain: {¢2’:[‘7’, ¢5’], ‘9’:[‘5’>, ‘11°]}

e votes: {‘3’: none, ‘4’: none, ‘67: ‘97, ‘72: ‘9> 8

€97, €10°: €97, ‘11°: <9’}

e character_distribution: [’UNK’>, °UNK’, ’UNK’, ’UNK’, °UNK’,
>UNK’, °UNK’, ’UNK’, ’UNK’, ’UNK’, °UNK’>, °UNK’, ’UNK’]

e player_alive: [‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’,
‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘Captain’, ‘alive’,

‘alive?’, ‘alive’]

The lists candidates and non_candidates record who participated in the
election and who didn’t. In the first vote, only the non_candidates can vote.
If there’s a tie, all the players except the tied candidates can vote. This can
repeat once more before abandoning the election process (without Captain).

The speech_order is also important. Once someones has spoken, he can
not speak again in this turn. So if a player claims himself to be the Seer, and
he declares a accuses in a former position to be bad, then the former player can
no longer argue for himself.

The still_candidates is the list of the players who are still candidates
after every candidate has spoken (i.e. those who did not quit the election). The
Captain should be one of these players.

The order of succession as Captain is an attribute that we have introduced

in the previous part. We note this down for further analysis.
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The dictionary votes records everyone’s vote. "None" indicates that P3 and

P4 abstained.

In player_alive, we put the item of index 9 to be "Captain" to record that

he is the Captain.

Day1 speech:

night_death: [ ]

forbidden: [¢5°]

speech_order: [‘8’, ‘7’, ‘6°, ‘6>, ‘4>, €3>, ‘27, ‘1’,
€127, ‘2]

call_vote: [ ]

votes: {}

character_distribution: [’UNK’, ’UNK’, ’werewolf’, ’UNK’,
’UNK’, °UNK’, °UNK’, °UNK’, °UNK’, ’UNK’, °UNK’, ’UNK’,
>UNK”]

player_alive: [‘alive’, ‘alive’, ‘suicide’, ‘alive’,
‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘alive’, ‘Captain’,

‘alive?’, ‘alive’, ‘alive’]

The forbidden_speaking is in this pattern specifically because in this game

we have "ancient" who can forbid one player from speaking during one turn.

Note that in this example there is no vote, since one werewolf suicided (as

we can see in character_distribution) hence stopping the process.

Day?2 speech:

night_death: [¢3’, ‘9]
forbidden: [¢4°]
speech_order: [‘6’, (7,’ ‘8’, ‘10’, (11;’ (127’ (1)’ (5)]

call_vote: [ ]
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e votes: {‘1°: ‘67, ‘6’: ¢8’, ‘6’: ‘67, ‘7. ‘82, ‘8.
‘6, “10°: ‘11°, “11°: f‘@°, “12°: ‘6°}

e character_distribution: [’UNK’, °’UNK’, ’werewolf’, ’UNK?’,
’UNK?, °UNK’, °UNK’, °UNK’, °UNK’, °UNK’, °UNK’, ’UNK’,
>UNK”]

e player_alive: [‘alive’, ‘alive’, ‘suicide’, ‘eliminated’,
‘alive’, ‘Captain’, ‘executed’, ‘alive’, ‘alive’,

‘eliminated’, ‘alive’, ‘alive’, ‘alive’]

The call_vote is to note down the call of the Captain, he could call everyone
to vote for some players’ execution. His vote count 1.5 points.
To adapt the syntax of json format, we should keep every dictionary with

the same keys, so the final structure of behavior information is like below:

"stage":"day2_speech",

"dispositive":{
"character_pattern": {"n_villager": 4, "n_god": 4,
"ordinary_werewolf": 4, "white_wolf": 0, "seer": 1, "witch":
1, "hunter": 0, "idiot": O, "ancient": 1, "assassin": 1,
"savior": 0, "part-to-kill":"True",
"witch_can_save_herself":"True"},
"night_death":["3","9"],
"forbidden": ["4"],
"candidates": [],
"non_candidates":[],
"speech_order":(["6", "7", "8", "10", "11", "12",6 "i", 6 "5"],
"still_candidates": [],
"order_succession_captain": [],
"call_vote":[],

"VOteS": [{Illll: II6II’ I|5ll: II8II’ I|6l|: ||6I| ’||7|l: "8", lI8|l: lI6|l’
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"10“: |l11ll’ Illlll: ll6|l’ II12I|: |l6ll}]’

"player_alive": ["alive", "alive", "suicide", "eliminated",
"alive", "Captain", "executed", "alive", "alive",
"eliminated", "alive", "alive", "alive"],

"character_distribution": ["UNK", "UNK", "werewolf", "UNK",
llUNKll s IIUNKI’ , llUNKII s IIUNKII , llUNK" s |IUNKII , llUNK" s HUNKII s
IIUNK"]

3,

The complete behavior records can be found in the Github page.
In the next part, we will try to guess which players are the werewolves, with

help of the retrieved speech information plus the behavior.

3.2 Who’s the werewolf

In this part, we will use all the information extracted in the previous parts
to make an educated guess about who the werewolves are.

A first idea is to assign each player a base likelihood of % (since we want
4 werewolves among 12 players) and increment or decrement these likelihood
probabilities according to the information we get.

The rules could be as below:

e Someone who is suicided is certainly a werewolf, so we should raise his

probability to 1.

e In a speech turn, if one player claims himself as the Seer and gives another
player a checked good identity, but the latter is proved to be a werewolf,
then the probability of the former should also be 1.

e In a speech turn, those who are marked bad by all the players who claim
themselves as the Seer (in particular by the real Seer) are certainly were-

wolves, their probability should be 1.
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e In a speech turn, especially in the captain election, if two players claim

themselves to be Seers, then there must be a true Seer and a werewolf.

e In a speech turn, the one who receives most attacks should get an incre-
ment in a speech turn, the one who receives most protects should get a

decrement.

e In a speech turn when vote for execution, the one who receives most votes

should get a greater increment.

e In a speech turn when vote for captain election, the one who receives most

votes should get a decrement.

These rules make some sense but they have some issues. Rules 5-8 directly
follow the general sentiment of the players, but the players are often misguided;
rules 1-3 rely on events that are too rare. Instead, of directly following other
players, we want to measure what their sentiment and their subsequent actions
tell about them. For example, if a player in is widely suspected in a game to
be a wolf, this does not necessarily mean he is; however it makes it suspicious
for other players to support this player. Also, the wolves have a tendency to
protect themselves. To incorporate this kind of reasoning, we need to consider
the wolves not individually but collectively.

Therefore the basic idea of our algorithm will be the following. Our goal
is to find 4 werewolves among 12 players, so we look for the likelihood of the
Team Werewolf to be some fixed combination. That is to say, to all the (142) =
495 combinations of 4 players, we will assign a "penalty score" that should be
higher when the probability of Team Werefolf being said combination is lower.
We do this by listing a set of rules: each rule should filter a scenario where
the speech and behavior information somewhat contradicts the hypothesis that
Team Werewolf is considered combination of four players, then increment the
penalty score of that combination.

More specifically, we consider a list wolf_list of four players and its com-

plementary villager_list in range(1,13). We will make the hypothesis that
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these lists accurately represent the situation and test them against the data.

The guiding principle is that the wolves know each other hence should not
accuse themselves of being bad, nor claim villagers to be good. However, follow-
ing such a strategy would rapidly make the other players notice the pattern and
raise suspicion. Consequently, wolves will often find a "scapegoat" among them
and abandon him. This way, if the scapegoat is revealed to be indeed a wolf,
other wolves who had accused him would look good in the eyes of everyone.

We translate this thinking by first writing a function find_scapegoat that
assigns to each item in wolf_list a score proportional to the number of execu-
tion votes or accusation speeches received by other players in wolf_list. The
output of find_scapegoat is then the item with maximum score.

Now, integrating speech and behavior information only from the suspected
wolves would not be enough. The problem is that the villagers are mostly in
the dark because the roles are kept secret. A way of remedying this is to have
lists of players probably_good and probably_bad that try to get the consensus
emerging from the speeches. Then, a villager would mostly want to support the
probably_good players and denounce the probably_bad players. The attitude
of the wolves towards these players is less informational: they have incentives
both to support or denounce those players.

We build the list probably_good as the list of players who have received
approval from a number of players greater than a certain threshold, and similarly
probably_bad is the list of players who have been denounced by a number of
players greater than another threshold.

Now, we have what we need to compute the score of the list wolf_list
(more accurately, the score of the set set(wolf_list)). We start with score =

0, and increment according to the following rules:

e If there is one player that is marked as wolf in character_distribution
(i.e. he suicided, so we are sure of this information) but is not a wolf under

our hypothesis, we raise score to a very large value infty.

e For each (hypothesised) wolf that denounces another wolf that is not the
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scapegoat, we increase score by a constant alpha. If this denunciation is
backed up by a vote for execution, we further increase by another constant

alphavote.

e For each wolf that supports a villager, we increase score by beta. If this
support is backed up by a vote during the Captain election, we further

increase by betavote.

e For each villager that denounces a player in probably_good, we increase

the score by gamma. Similarly, we also have gammavote.

e For each villager that supports a player in probably_bad, we increase the

score by delta. Similarly, we also have deltavote.

Further, the increments in score that result from the speech or behavior of
a wolf that is confirmed by character_distribution (he is absolutely a wolf)
are multiplied by a coeflicient absolute_coef.

Also, we need to keep track of the time. Indeed, the more we advance in
the game, the more the players know so the more their decisions carry weight.
Therefore, we have a parameter time_decay, and the score increments that
result from an action (speech or behavior) taken during the day t speech round
is multiplied by time_decay#**t (the Captain election speech round corresponds
to t=0). The probably_good and probably_bad lists are also updated for
each round, to account for the fact that they are built from the ever-increasing
information the villagers get.

When all this is done, we aggregate the scores of each of the 495 possible

sets set (wolf_list). The wolf team should be the one having the lowest score.

3.3 Results analysis

For the evaluation of this predictor, we test on the three games S1E101,
S1E102 and S1E103. In order for the evaluation to be impartial, for each eval-
uation game we retrained the SVM classifier on the sentences coming from the

eight other games of the corpus only.
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S1E101 We show the result of SIE101’s Werewolf Team’s prediction and the
most likely top 10 combinations with their penalty score as below. This was

computed using the data of the whole game.

wolf team | score
(2,3,4,9) 15.54
(1,2, 3,10) | 16.0
(2,3,9,10) | 16.14
(2,5,9,11) | 17.14
(1,2,5,11) | 189
(2,3,5,11) | 189
(2, 3,4, 10) | 18.98
(2, 3,4, 11) | 20.0
(2,4,9,11) | 20.02
(2,5,7,11) | 20.29

In this game, P2, P3, P4 and P11 were the real 4 werewolves. We are glad
to see P11 occur many times even if he is not put in the most probable werewolf
team. But even though our predictor guesses 3 werewolves in 4, the player P9 is
put also in the combination and also appears repeatedly in the other probable
combinations. P9 was in fact the Seer so he was from the beginning in the
opposite team.

We can see how the predicted most probable werewolf team evolves as the

predictor gets progressively, turn by turn, the information from the game each:

turn predicted wolf team | score
captain_election | (1, 3,4, 9) 0.0
dayl_speech (2, 4, 8, 12) 5.62
day2_speech (1,2, 4, 8) 9.12
day3_speech (2,3,4,9) 15.54

To account for the imprecision of the method, we also compute a "probabil-

ity" for each individual player to be a werewolf by counting the occurrences in
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the top N = 10 combinations. The lists of the probabilities (player i in index
i-1) are given here for each speech turn (and we remind in the last column of

the top scoring combination) :

predicted
o . predicted
turn individual wolf probabilities individual
wolf team
wolves
captain_election | 0.2, 0.1, 1.0, 0.8, 0, 0.3, 0.2, 0.2, 0.8, 0.1, 0.1, 0.2] | (3,4,9,6) (1,3,4,9)
dayl_speech [0, 1.0, 0, 0.8, 0, 0.1, 0.2, 0.7, 0, 0.4, 0.3, 0.5] (2,4,8,12) (2, 4, 8, 12)
day2_speech [0.3, 1.0, 0.3, 0.8, 0, 0.1, 0.1, 0.6, 0.3, 0.3, 0, 0.2] | (2,4,8,1/3/9/10) | (1, 2, 4, 8)
day3_speech [0.2, 1.0, 0.6, 0.4, 0.4, 0, 0.1, 0, 0.4, 0.3, 0.6, 0] (2,3,11,4/5/9) (2,3,4,9)

In general, individually, at the end the player P2, P3, P11 are the most
probable werewolves, the combination of P2, P3, P4 and P9 is the most probable
werewolf team.

The reality is that P2, P3, P4 and P11 were the real 4 werewolves, among
which P2 suicided at the end of dayl_speech, P3 was poisoned by the Witch
and P4 was alive until the final turn. It is satisfying to see that our predictor is
capable to find the werewolves who did not suicide like P3. We are also glad to
see that our predictor has found P4 very early from the beginning to the end,

faring even better than human players.

S1E102 The top predicted combinations at each turn are:

turn predicted wolf team | score
captain_election | (1,2, 3, 5) 0.0

pk_speech (2, 3, 10, 11) 0.0

extra_pk (2, 4, 10, 11) 20.84
dayl_speech (1, 4, 10, 11) 24.25
dayl_lastwords (1, 2,4, 11) 27.79
day2_speech (1, 4, 10, 11) 24.25
day3_speech (8,9, 10, 11) 34.53
day4_speech (1,9, 10, 11) 36.67

The top predicted individuals for each turn, aggregated from the top 10

combinations, are:
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predicted
predicted
turn individual wolf probabilities individual
wolf team
wolves
captain_election | [1.0, 1.0, 0.4, 0, 0.4, 0, 0, 0, 0.4, 0.4, 0.4, 0] (1,2,3/5/9/10/11) | (1,2, 3, 5)
pk_speech [0, 0.6, 0.4, 0.3, 0.5, 0.5, 0.1, 0.5, 0.2, 0.5, 0.4, 0] (2,5/6/8/10) (2, 3, 10, 11)
extra_pk [0.4,0.4, 0.4, 1.0, 0.4, 0, 0, 0, 0, 0.4, 1.0, 0] (4,11,1/2/3/5/10) | (2, 4, 10, 11)
day1_speech [0.6, 0.5, 0.3, 0.8, 0.1, 0.1, 0, 0.1, 0.2, 0.4, 0.9, 0] (11,4,1,2) (1, 4, 10, 11)
dayl_lastwords [0.7, 0.6, 0.6, 0.7, 0.7, 0, 0, 0, 0, 0, 0.7, 0] (1,4,5,11) (1, 2,4, 11)
day2_speech [0.2,0.2, 0.1, 0.9, 0.2, 0, 0.1, 0.1, 0.1, 1.0, 0.9, 0.2] (10,4,11,1/2/5/12) | (1, 4, 10, 11)
day3_speech [0.1,0.1, 0.1, 0.2, 0.1, 0, 0.1, 0.2, 1.0, 1.0, 0.8, 0.3] (9,10,11,12) (8,9, 10, 11)
day4_speech [1.0,0.2,0.2,0.2, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.1, 0.1] | (1,9,10,2/3/4) (1,9, 10, 11)

The real 4 werewolves in S1IE102 were P1, P3, P9 and P10. Among them,

P10 suicided in day2_speech, P9 suicided in day3_speech, P1 suicided at the

suicided, even better than a part of human players.

end. Our predictor has successfully found P1, P3 and P10 early

S1E103 The top predicted combinations at each turn are:

before they

turn predicted wolf team | score
captain_election | (1,4, 6, 7) 0.0
dayl_speech (2, 6, 8, 12) 16.14
day2_speech (2, 3, 8, 12) 23.628

The top predicted individuals for each turn, aggregated from the top 10

combinations, are:

predicted
predicted
turn individual wolf probabilities individual
wolf team
wolves
captain_election | [0.3, 0.7, 0.1, 0.8, 0.3, 0.5, 0.3, 0, 0.6, 0.3, 0, 0.1] | (4,2,9,6) (1,4,6,7)
dayl_speech [0.1, 0.4, 0.3, 0.4, 0.3, 0.5, 0, 1.0, 0.2, 0, 0, 0.8] (8,12,6,2/4) | (2,6, 8, 12)
day2_speech 0.1, 0.3, 1.0, 0.1, 0.1, 0.4, 0, 1.0, 0, 0.1, 0.3, 0.6] | (3,8,12,6) (2, 3,8, 12)

The real werewolves were P3, P8, P11, P12. Among them,
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in the dayl_speech and P3 suicided in the day2_speech, P11 and P12 were
eliminated during the night. Our predictor has successfully found the hidden
wolf P12 but failed to find P11.



4 Discussion

In our project, we have built a simple model to predict the werewolves’
identities in the game of the Werewolves of Millers Hollow in order to help build
a chatbot which could react as a real player in the future. We began by simply
suppose that we are in an ideal situation, that is to say, all the input is in form
of text and we play as a villager which only has a task of analyzing, responding
and voting. In this paper, we merely focus on the analyzing part of the chatbot.

In the first step, we tried several machine learning and deep learning meth-
ods by Scikit-Learn and Keras to classify the intent of a single sentence on a
manually annotated dataset, then finally chose the SVM model. In the sec-
ond step, we got help from the Chinese dependency parsing tool HanLP to
extract sentence main parts and to retrieve concrete information for later step.
Finally, using all this extracted information, we simulated the probable were-
wolves combinations then assigned scores to all these hypothetical combinations
by hand-crafted rules, to find the combination of 4 werewolves which is the most
likely to be validated.

We are far from building a real chatbot AI player in this game. Besides
working to build the response and vote parts, we already have much room for
improving our game analysis model. For example, the RNN and LSTM model
costs the most time but receive worst results, which we totally did not expect.
We could add more syntactical features to LSTM model or use word embed-
ding representation in the other methods. Moreover, the precise comprehension
of single sentence has also many errors, especially when facing ambiguous sen-
tences. Another area of improvement is the hand-crafted rules in the last part.
They stem from a very simple modelisation of the game’s most basic and naive
strategies: we did not even go beyond wolves and villagers, when there are
strategies that revolve around the Seer for example (especially in the Captain
election round) that reveal a lot about the players’ team.

Despite all these over-simplifications, we found on our three test games that

the prediction is surprisingly good, in fact better than most of the human play-
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ers in those game (and those were seasoned Werewolf players!). We expect
that exploring the numerous possibilities of improvement could yield even more
remarkable results.

All comments are welcome on the Github page of the project, where all the
data and scripts are also available: https://github.com/ExeCuteRunrunrun/

loup-garou
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Appendices

A Tools and libraries
The following tools and libraries were used for this project:
Python 3.6.3
ipython 6.1.0
jupyter 1.0.0
HanLP 0.1.41 (python interface pyHanLP)
jieba 0.39
Keras 2.0.6 (with tensorflow 1.0.0 back end)
Pandas 0.20.3

Scikit-Learn 0.19.1

B Glossary of Werewolf game-specific expressions

Here is a list of the most common expressions in use during the in-game
discussions, along with their pinyin pronunciation, their literal translation and
their definition.

MR: shenmin divine villagers; villagers who have special abilities

RN /MR /EE: langren/lang/fei werewolves; werewloves
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Hi&: zibao explode; werewolf suicide
AFAL: gongtouquan public vote; vote to decide who is to be executed

ZBR: jinghuiliu order of succession as Captain; if the Captain is the Seer,
he can verify the identity of one person every night, if this person is good,
he will pass his badge to this person when he dies, and if not, to the next
one in the jinghuiliu

Fr
g

shangjing go to captain election; participate in the captain election

rzl,;
7

: tuishui go back to water; quit the election

i
X

jingshang in the election; ex. there are now two Seers in the election

g
-

: jingxia out of the election; the players who didn’t participate in the
election from beginning

JFZEA: guipiaoquan right of reuniting votes; call the others to vote against
someone

5 /% N /&% yan/yanren/chayan verify identity; verify a player’s identity
during the night to know wether he’s good or bad

& %: chasha verify kill; verify someone’s idententity to discover he’s a wolf

4:: jinshui golden water; good identification, verify someone to discover he’s
a villager

#R7K: yinshui silver water; the one who is saved by the Witch (hence he is
probably good, except if he is a suicide wolf)

Bi7K: tongshui copper water; the one who is protected by the Savior

H#51r: guashenfen hang on his identity; might have a functional identity, ie
divine villager or werewolf

Bk/#BE: tiao/qitiao jump out; claim oneself to be some divine villager (eg.
tiao the Seer means to claim oneself as the Seer)

ZEAXR: chuanyifu wear the cloth of. .. ; declare oneself as some divine villager

f2#k: hantiao bold jump; when a wolf declares himself as a divine villager,
often the Seer

/B /HBEL. chong/chongpiao/bangpiao bind the votes; since the were-
wolves are a group, they can reunite all their votes to vote someone to be
executed, it is risky behavior because they may then be exposed

RERLITF: minjiminyixia villager and below villager; equal to or worse
than ordinary villager, ie either an ordinary villager or a werewolf
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JRME: langmian werewolfness; the probability of being a werewolf

Hf#: liaobao explode by talking; a werewolf who exposes himself by mistake
RIKIR: shenshuilang deep water wolf; a werewolf who hides very well
BIR: tielang iron wolf; someone who is certainly a wolf

£MNIJR: jinganglang diamond wolf; a werewolf whom everyone thinks confi-
dently is good

FEJK: yinlang hiding wolf; a hiding werewolf

IR songlang weak wolf; a werewolf who is unconfident and afraid, a game
where no wolf participates in the captain election is also called a weak
game

J]: dao knife; kill
#J]: aidao get killed

HJ]: zidao kill oneself; when the werewolves at night choose to kill one of
them so that he could get the Witch to save him and make everyone think
he is good

SEPAA: maiduiyou sell out one’s companions; a werewolf wo denounces the
other wolves in order to appear as good

HIERITZK: biyanwanjia player with closed eyes; the players who do not open
their eyes in the night, ie the ordinary villagers

J%K: fanshui back water; when player A claims B to be good (through jin-
shui), but player B then publicly suspects A to be a werewolf

IKILZ: fanshuilijing back water and support the Captain; to fanshui and
support another candidate to the captain election

#7K: biaoshui express water; claim oneself to be good

KI7K: huashui paddle water; have nothing important to say as if knowing
nothing

HE/K: paishui drain water; guess all the good identities (and the wolves by
elimination)

B/f/BR: yu/yu/yumin silly/fish/silly villager; the villager who does not
trust the real divine villagers and who helps the werewolves

#ZR: baomin mob; the villager who votes for the real divine’s execution, too
confident in his wrong judgement
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B/ /EE: jingzuo/jingyou left/right hand of the captain; the Captain
chooses the order of speeches, from his left hand then clockwise, or his
right hand then countclockwise

XfBk: duitiao jump against each other; two players claim a same divine iden-
tity

$I#: kangtui unite everyone to push out; the werewolves accuse a villager to
be bad, and all the others don’t trust this player either, so the werewolves
succesfully call the villager to be executed

/B8R /4T: pai/ca/da criticize; accuse someone or mark him as werewolf
H: chu out; vote someone out

H: gua hang on; temporarily label someone as an option for the execution
vote

K: fei fly on; decide to vote for/against someone
HBIEN /JEEAHL: qgianzhiwei/houzhiwei previous/next in speech order
Vi1: zhanbian stand by one side; support one player

FINH: renshi know each other; ... and ... are wolves (only wolves can see
each other’s identity)

MZ{5B: chixinxi eat information; get information in the night, so that either
he is a divine villager, or a werewolf

5F /3R zuohao/zuohuai make good/bad; take an action that makes
someone seem good /bad

DI #E: xinlulicheng one’s various thoughts (during the game)

HUES1y: zizhengshenfen prove one’s good identity; use one’s special ability
to prove one’s good identity (only divine villagers can do this)

G jiaodianpai focus point; the most controversial player
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