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Abstract

The generd topic of thisthesisis the probabilistic modeling of language, in particular natural language. In
probabilistic language modeling, one characterizes the strings of phonemes, words, etc. of a certain domain
in terms of a probability distribution over all possible strings within the domain. Probabilistic language
modeling has been applied to a wide range of problemsin recent years, from the traditional uses in speech
recognition to more recent applicationsin biological sequence modeling.

The main contribution of thisthesisisaparticular approach to thelearning problem for probabilistic

language model's, known as Bayesian model merging. This approach can be characterize as follows.

e Models are built either in batch mode or incrementally from samples, by incorporating individual

samples into aworking model

e A uniform, small number of simple operators worksto gradually transform an instance-based model to
ageneralized model that abstracts from the data.

e Instance-based parts of amodel can coexist with generalized ones, depending onthe degree of similarity
among the observed samples, alowing the model to adapt to non-uniform coverage of the sampl e space.

e The generalization process is driven and controlled by a uniform, probabilistic metric: the Bayesian
posterior probability of amodel, integrating both criteria of goodness-of -fit with respect to the dataand
anotion of modd simplicity (‘Occam’s Razor’).

The Bayesian model merging framework is instantiated for three different classes of probabilistic
models: Hidden Markov Models (HMMs), stochastic context-free grammars (SCFGs), and simple proba-
bilistic attribute grammars (PAGs). Along with the theoretical background, various applications and case
studies are presented, including the induction of multiple-pronunciation word models for speech recogni-
tion (with HMMs), data-driven learning of syntactic structures (with SCFGs), and the learning of smple
sentence-meaning associations from examples (with PAGS).

Apart from language | earning issues, a number of related computational problemsinvolving proba-
bilistic context-free grammars are discussed. A version of Earley’s parser ispresented that solves the standard
problems associ ated with SCFGs efficiently, including the computati on of sentence probabilitiesand sentence
prefix probabilities, finding most likely parses, and the estimation of grammar parameters.

Finally, we describe an algorithm that computes n-gram statistics from a given SCFG, based on
solving linear systems derived from the grammar. This method can be an effective tool to transform part of



the probabilistic knowledge from a structured language model into an unstructured low-level form for usein
applications such as speech decoding. We show how thisproblemisjust aninstance of alarger class of related
ones (such as average sentence length or derivation entropy) that are al solvablewith the same computational

technique.
An introductory chapter tries to present a unified view of the various model types and agorithms

found in the literature, as well as issues of model learning and estimation.

Prof. Jerome A. Feldman, Dissertation Chair
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Chapter 1

| ntroduction

1.1 Overview

The genera topic of this thesis is the probabilistic modeling of language, in particular natural
language. In probabilistic language modeling, one tries to characterize the strings of phonemes, words, etc.
of a certain domain in terms of a probability distribution over all possible strings within the domain. The
language and mathematical framework of probability theory isused to formalize questions such as

e Given alanguage, which of two string is more likely to be observed?
e Given alanguage and a string, which of two derivations (or analyses) of the string is more likely?
e Given two languages, how similar (or different) are they?

e Given alanguage described in some way and a corpus of samples, how good a description of the data

isthe language?

All of these problems have numerous applications, and the success of the probabilistic approach
is reflected by the large number and the diversity of the domains in which probabilistic language models
have been applied to advantage in recent years. These include both established applications such as speech
recognition and understanding, as well anew ones, such as biologica sequence modeling.

A prerequisitefor most of these applicationsisthe learning problem: given asample corpusthat is
assumed to be representative of the domain, find an adequate probabilistic description of it. The main topic
of thisthesisis a particular approach to the learning problem for probabilistic language models, with the

following characteristic features:

e Models are built either in batch mode or incrementally from samples, by incorporating individual

samples into aworking model

e A uniform, small number of simple operators worksto gradually transform an instance-based model to
ageneralized model that abstracts from the data.
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e Instance-based partsof amodel can coexist with generalized ones, depending onthe degree of similarity
among the observed samples, alowing the model to adapt to non-uniform coverage of the sampl e space.

e The generalization process is driven and controlled by a uniform, probabilistic metric: the Bayesian
posterior probability of amodel, integrating both criteria of goodness-of-fit with respect to the dataand

anotion of modd simplicity (‘Occam’s Razor’).

Our? approach is quite general in nature and scope (comparable to, say, Mitchell’s version spaces
(Mitchell 1982)) and needs to be instantiated in concrete domains to study its utility and practicality. We
will do that with three different types of probabilistic models: Hidden Markov Models (HMMs), stochastic
context-free grammars (SCFGs), and simple probabilistic attribute grammars (PAGS).

Following this introduction, Chapter 2 presents the basic concepts and mathematical formalisms
underlying probabilisticlanguage model s and Bayesian learning, and al so introduces our approach to learning
in generd terms.

Chapter 3 (HMMs), Chapter 4 (SCFGs) and Chapter 5 (attribute grammars) describe the particular
versions of the learning approach for the various types of languages models. Unfortunately, these chapters
(except for Chapter 3) are not entirely self-contained, as they form a natural progression in both ideas and
formalisms presented.

The following two chapters address various computational problems aside from learning that arise
in connection with probabilistic context-free language models. Chapter 6 deal swith probabilistic parsing and
Chapter 7 gives an agorithm for approximating context-free grammars with much simpler n-gram models.
These two chapters are nearly self-contained and need not be read in any particular order (with respect each
other or the preceding chapters).

Chapter 8 discusses general open issues arising from the present work and gives an outlook on
future research.

Virtualy all probabilistic grammar types and agorithms described in the following chapters have
been implemented and integrated in an object-oriented framework in CommonLisp/CLOS. The result purports
to be a flexible and extensible environment for experimentation with probabilistic language models. The
documentation for this system is available separately (Stolcke 1994).

Theremainder of thisintroductiongivesgeneral motivationand highlights, aswell as somehistorical
background.

1.2 Structural Learning of Probabilistic Grammars

Probabilistic language models (or grammars) have firmly established themselves in a number of
areas in recent time (automatic speech recognition being one of the major applications). One important
factor is their probabilistic nature itself: they can be used to make weighted predictions about future data

1The first person plural will be used throughout, both for stylistic uniformity and to reflect the fact that much of this work was done
in collaboration with others. Bibliographic referencesto co-authored publications are given at the end of this chapter.
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based (or conditioned) on evidence seen in the past, using the framework of probability theory as a consistent
mathematical basis.

However, thisfundamental featureis only truly useful because probabilistic models are al so adapt-
able: there are effective algorithms for tuning a model based on previously observed data, so as to optimize
its predictionson new data (assuming old and new data obey the same statistics).

1.2.1 Probabilisticfinite-state models

An example in point are the probabilistic finite-state models known as Hidden Markov models
(HMMs) routinely used in speech recognition to model the phone sequences making up the words to be
recognized. The top part of Figure 1.1 shows a simple word model for “and.” Each phonetic redlization of
the word corresponds to a path through the network of states and transitions, with the probabilitiesindicated.
Given a network structure and a training corpus data to be modeled, there are standard agorithms for
optimizing (or estimating) the probability parameters of the HMM to fit the data.

However, a more fundamental problem is how to obtain a suitable model structure in first place.
Thebasicideaherewill beto construct initial model networksfrom the observed data (as shown in the bottom
part of Figure 1.1), and then gradually transform them into a more compact and general form by a process
called model merging. We will see that thereis afundamental tension between optimizing thefit of the model
to the observed data, and the goa of generalizing to new data. We will use the Bayesian notions of prior and
posterior model probabilitiesto formalize these conflicting goals and derive a combined criterion that allows
finding a compromise between them.

Chapter 3 describes thisapproach to structural learning of HMMs and discusses many of the issues
and methods recurring in later chapters.

1.2.2 TheMiniatureLanguage Learning (L) Task

An additional motivation for the present work came from a seemingly simple task proposed by
Feldman et al. (1990): construct a machine learner that could generalize from usage examples of a natural
language fragment to novel instances, for an arbitrary natural language. Figure 1.2 shows the essentia
elements of this miniature language learning problem, informally known as the “L,” task. The goal is
to ‘learn’ the Lo language from exposure to pairs of corresponding two-dimensional pictures and natura
language descriptions. Both the syntax and semantics of the language were intentionally limited to make
the problem more manageable. The purpose of the proposal was to highlight certain fundamental problems
with traditiona cognitive science theories, including issue such as dependence on the underlying conceptua
system, grounding of meaning and categorization in perception, and others which are explored in recent and
ongoing research (Regier 1992; Feldman et al. 1994).

For our purposes we can abstract a (much simpler) subproblem from this interdisciplinary task:
given pairs of sentences and associated idealized semantics (e.g., in first-order logic formul ag), construct an

adequate formal description of the relation between these two for the given language.
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Figure 1.1: Hidden Markov Models for the word “and”

A. Generdized word model derived by model merging. B. Initial model derived from observed
data, prior to model merging. The symbol “g” represents a glotta stop.

Chapters 4 and 5 can be viewed as a study on how to bridge the gap between this formal syn-
tax/semantics learning problem and the probabilistic methods that were originaly developed for the more
constrained finite-state models mentioned earlier. To this end, we first relax the finite-state constraint on
the syntactic part of the learning problem, and move to probabilistic context-free models (Chapter 4). The
result isan extended model merging a gorithmthat compares favorably with several aternative computational
context-free learning approaches proposed in the literature, while coping with a significant portion of the
syntactic structuresfound in the L task.

The final extension of the model merging approach is designed to allow the combined learning of
miniature language syntax and semantics (Chapter 5). The basic idea here is to capture the correspondence
between language elements and their meaning by attaching probabilistic attributes to the nonterminals of a
(likewise probabilistic) context-free grammar. Thisapproach turnsout toimposerather strong restrictions, for
both learning and the expressive power of the model, but is neverthel ess sufficient to learn a basic version of
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“the circleis above a square”
“thetriangleisto theleft of the square”

Figure1.2: The Lo task

The learner is exposed to picture-sentence pairs as shown here (in fixed, but arbitrary natura
language), and has to generalize so as to be able to determine the truth of novel picture-sentence
pairs. The baseline version of thistask uses simple static binary spatial relationsand correspond-

ingly limited syntax as shown here. Various variants that extend the scope of the task are given
in Feldman et al. (1990).
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the Lo language. Whilethe resulting system cannot do full justiceto the original L, problem, it still provides
a useful example of both the possibilitiesand the limitations of the model merging approach.

1.3 Miscellaneoustopics

In the second part of this thesis we discuss various computational issues which are related to, but
not directly part of the learning problem for probabilistic language models. The focus here is on stochastic
context-free grammars (SCFGs), which, in spite of their shortcoming, represent the current state-of-the-art in
computationa approachesto probabilisticnatural language processing. Historically, the a gorithms presented
here were devel oped to meet specific needs, either as part of the implementation of the learning a gorithms
described in the first part, or as a result of the tie-ins of the present work with an ongoing project in speech
understanding. (Jurafsky et al. 1994a).

Chapter 6 describes a parser for SCFGs that solves several of the standard tasks for probabilistic
grammars in a single elegant and efficient framework, namely a probabilistic generaization of Earley’s
algorithm for regular CFGs. In particular, we show how fairly straightforward extensions to Earley’s parser
allow the computation of sentence probabilities, most likely parses, and the estimation of the grammar
parameters. The algorithm is of specia interest because it aso alows efficient, incremental computation of
the probabilities of possible next wordsfor prefixes of sentences generated by a SCFG.

Chapter 7 solves a related problem: given a probabilistic context-free description of a language,
compute low-level statistics of the type: “what is the probability of the next word being X given that the
previoustwo wordswereY and Z?’ Such gtatistics, known as n-gram probabilities, are essentia to a number
of standard language modeling applications which cannot easily draw directly on higher-level models (such
a SCFGs) for computational reasons. For these, the algorithm is a useful tool for transfering some of the
higher-level probabilisticstructureintothelower-level representation. The appendix of Chapter 7 a so surveys
anumber of related computational tasks for SCFGs (such as computing the average sentence length) that are
solvablein amanner similar to the n-gram problem.

1.4 Bibliographical Note

Various portions of this thesis are based on work published previoudly, listed here for reference:
Chapter 3 (Stolcke & Omohundro 1993; Stolcke & Omohundro 1994a; Wooters & Stolcke 1994), Chapter 4
(Stolcke & Omohundro 1994b), Chapter 6 (Stolcke 1993), Chapter 7 (Stolcke & Segal 1994), (Jurafsky et al.
1994b). Any remaining errors are of course the sole responsibility of thisauthor.



Chapter 2

Foundations

2.1 Preiminaries

In this chapter we review some basic definitions and concepts that will be used throughout the
following chapters. We also introduce the classes of probabilisticlanguage models that are the subject of this
thesis,* along with the relevant standard algorithms.

Therange of probabilisticmodel sand comcepts covered hereisdightly wider than strictly necessary
for therest of thethesis,in order to point out somegeneralizati ons and connecti ons between vari ous approaches
that are often not found in the specialized literature.

2.2 Probabilistic Language Models

A probabilistic language model or probabilistic grammar generalizes the classica notion of a
grammar as an acceptor/regjector of strings to the probabilistic domain. Specificaly, the (probabilistic)

language generated by such a grammar is a probability distribution over strings, written
P(X|L)

where X is arandom variable ranging over strings, and I denotes the language in question. The notation
is that of a conditional distribution, as we can think of a particular probability P(z|L) as the conditional
probability of drawing the string = given that we have previoudly fixed the language to be L. (This suggests
that the language itself is drawn probabilistically from a pool of possible languages; thisisindeed a crucial
ingredient of the approach devel oped later on.) The domain of the probability distributionare thefinite strings
over afixed, discrete a phabet 3.

A probabilistic grammar M (as in model) is a description of such a distribution. The language
generated by amodd M is L( M), but when writing probabilitiesand distributionswe usualy collapse the

IThisisincludesall the ‘standard’ models; probabilistic attribute grammarswill be deferred until Chapter 5.
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distinction between language (distribution) and grammar (description), and simply write

P(X|M) = P(X|L(M))

221 Interpretation of probabilities

The probabilitiesassigned to stringsby amodel can beinterpreted as long-termrel ative frequencies
of thosestrings, assuming conditional independenceof samples. Thisfrequentistinterpretation becomes prob-
lematic asweintroduce probabilitiesof entitiesthat do not correspond to outcomes of repeatabl e experiments,
such as the model s themselves.

In such cases it is more plausibleto think of probabilitiesas degrees of belief, the subjectivist inter-
pretation of probabilities. The classic paper by Cox (1946) shows that the two interpretations are compatible
in that they observe the same calculus if some simple assumptions about beliefs and their compositional
properties are made.

The unification of the frequentist and the subjectivist trestment of probabilitiesis fundamenta to
the Bayesian approach described later. It allows probabilitiesto be used as the common ‘currency’ relating

observations and beliefs about underlying explanations for observations.

2.2.2 Anexample: n-gram models

A simple example both illustrates these notionsand introduces a useful standard tool for later use.
Ann-grammodel definestheprobability of astring P (x| M) asaproduct of conditional probabilities
P(z|M) = P(z1|$ M)P(zo$z1; M) ... P(zp|21. .. 2n_1; M)
Pl ®iongr. o, M)
P@leicngr o xi—, MP($ei—ng2. . can M) (2.1)
where [ is the string length, z; is the ith symbol in string z, and $ is a specia delimiter marking beginning

and end of astring.

The parameters of an n-gram model are thusthe probabilities
P(zplz1...2n-1)

foralzy, ..., z, € LU{$}. (Itisconvenient to allow aprefix of z1 . ..z, _1 totakeonthevaue$ to denote
theleft end of the string. The context always makes it clear which end of astring $ stands for.)
It isuseful to compare definition (2.1) to the expression for P (x| M) arrived at by repeated condi-

tioning, which istrue of any probability distribution over strings:
P(:L‘|M) = P(SL‘1|$)P(1‘2|$£L‘1) .. .P(l‘1|$l‘1. . .:E]_l)P($|$CL‘1. . .:L‘l) (2.2)

We see that that n-gram model s represent exactly those distributionsin which each symbol isindependent of
the beginning of the string given just theimmediately preceding n — 1 symbols (including the position of the
[eft string boundary).
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The number of parameters in n-gram models grows exponentially with n, and only the cases
n = 2 (bigram models) and n = 3 (trigram models) are of practical importance. Bigram and trigram
models are popul ar for various applications, especially speech decoding (Ney 1984), to approximatethe true
distributions of language elements (characters, words, etc.), which are known to violate the independence
assumption embodied in (2.1).

Because (2.1) isessentialy atruncated version of the truejoint probability given by (2.2), n-grams
are in some sense a natura choice for this approximation, and are appropriate to the extent that symbol
occurrences tend be more and more independent as the di stance between the occurrences increases. Of course
there are important cases in natural language and e sawhere where this assumption is blatantly wrong. For
example, the distribution of lexical elements in natural languages are constrained by phrase structures that
can relate two (or more) words over essentialy arbitrary distances. Thisis the main motivation for moving,
at aminimum, to the stochastic context-free modelsthat are one of the main subjects of thisthesis.

2.2.3 Probabilisticgrammars asrandom string generators

One can aways abstractly associate a probabilisticlanguage L with a corresponding random string
generator, i.e., a device that generates strings stochastically according to the distribution . However, a
probabilistic grammar usually describes . by making this generator concrete. For example, for n-grams
a generator would output string symbols left-to-right, always choosing the next symbol z; according to a
probability lookup table indexed by the (n — 1)-tuple of previous symbols z;_,41...2;—1. One possible
choice is $, which causes the generator to stop.

The probability of a string isthus equivalent to the joint probability of a sequence of roles of dice,
each die corresponding to the conditional distribution of a certain n — 1-gram. (Hence there are roughly
|©|?~1 dice)? Each diehas |X| + 1 faces, onefor each possible next symbol or $.

In a sense, n-gram models represent a ‘brute force' approach to probabilistic language modeling,
and are linguigtically not very interesting due to their inability to describe complex structures and non-local
dependencies among language el ements. However, in many applications they give surprisingly good results
that are not easy to improve upon with more sophisticated models. For this reason, and because they can be
processed very efficiently they have come to be the method of choice in tasks such a speech decoding. In
Chapter 7 we will revisit n-gram models and describe an agorithm for deriving them from more complex
probabilistic models, rather than estimating them directly from data.

2.2.4 Multinomial distributions

All the language models considered in thisthesis can be described as generating strings through a
sequence of (generalized) die tosses. It is therefore useful to review some basic properties of multinomial
distributions, the class of distributionsdescribing the outcomes of generalized dice.

2The actua number is

||EE| |n—_11 , taking into account the left contexts containing the $ marker.
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A multinomid distribution (multinomial, for short) of dimension n is specified by a tuple of
parameters @ = (01,...,0,),0 < 6; < 1, Z?:l 8, = 1. The multinomia distribution itself describes the
probability of the possible outcomes of ¢ independent samples drawn according to 8. Since that probability
depends only on the countsfor each outcome, ¢4, . . ., ¢,,, we can write

' n
Pler... eale,0) = ——T] 05 - (2.3)
i=1

c1!--cpl 4

This is the distribution for unordered samples, where sequences of outcomes that are permutations on one

another are considered to be the same joint event. For ordered samples the distributionis simply
Plcy,... cnle,0) = ] 05 (2.4)
i=1

i.e., the multinomial coefficient can be dropped.

The usua scenario throughout thisthesis is that the outcomes (samples) are given, and one wants
to draw conclusions about 6. In this case the difference between (2.3) and (2.4) isa constant, and can safely
be ignored. We will therefore use mainly the ordered sample scenario since it is described by the smpler
formula (2.4).

The following formulas summarize the means (expectations), variances, and covariances, respec-
tively, for the multinomial .

E(CZ) = C@i (25)
COV(CZ'7 C]') = —cb; Hj (27)

2.25 Parameter estimation

A fundamental problem for probabilistic language modeling is the inference of parameter values
(such as @ vectors in an n-gram grammar) from available data. 1f the parameters fully describe the choice
of athe model then parameter estimation subsumes the ‘learning’ problem for grammars of the given class.
Althoughit is possible to parameterize all aspects of a grammar, we will see later that is often useful to draw
a distinction between parameters of the continuoustype found in n-grams and other, ‘ structural’ aspects of a
model.

In the language of statistics, an estimator 6 for a parameter ¢ is simply a function that computes a
putative value for ¢ given a set of samples X: § = §(X). Theintuitiverequirement that § should be ‘close
to the actual value ¢ is formalized by the notions of bias and consistency. An estimator is unbiased if its
expected val ue given data drawn from the distribution specified by 6 is @ itsdf: E((X)|¢) = 6). Otherwise
one can quantify thebiasas E(A(X)|6) — 6. An estimator is consistent if it convergestothe trued asamount

of dataincreases.
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For example, for multinomials an unbiased, consistent estimator of the component probabilitiesd;
is given by the observed averages
6; = — . (2.8)

Zero biasisnot dwaysdesirable, however, as attested by the extensive literature on how to modify
estimates for n-gram (and similar) models so as to avoid estimates from taking on 0 values, specifically in
linguisticdomains. Accordingto (2.8) thiswould be the case whenever some outcome has not been observed
a al (¢; = 0). In many domains and for realistic sample sizes one expects many countsto remain zero even
though the underlying parameters are not; hence one wantsto biasthe estimates away from zero. See Church
& Gale(1991) for asurvey and comparison of variousmethods for doing that. Another reason for introducing
biasisto reduce the variance of an estimator (Geman et al. 1992).

2.2.6 Likelihood and cross-entropy

If the data X isgiven and fixed, we can view P(X | M) asafunctionof M, thelikelihood (function).
A large class of estimators, so caled maximumlikelihood (ML) estimators, can be defined as the maxima of
likelihood functions. For example, the simple estimator (2.8) for multinomia s happens to aso be the ML
estimator, as setting the parameters 6; to their empirica averages maximizes the probability of the observed
data

Intuitively, a high likelihood means that the model M ‘fits' the datawell. Thisis because a model
allocates a fixed probability mass (unity) over the space of possible strings (or sequences of strings). To
maximize the probability of the observed strings the unobserved ones have as little probability as possible,
within the constraints of the modd. In fact, if a model class allows assigning probabilities to samples
according to their relative frequencies as in (2.8), thisis the best one can do.

An dternative measure of thefit or closeness of amodel to adistributionisbased on the concept of
entropy. The relative entropy (al so known as the Kullback-L eibler distance) between two distributionsp and
q isdefined as

D(pllg) = Zp |09 (2.9)

This can be written as

D(plla) = Zp )logg(z) — > p(x)logp(z)

The second sum is the familiar entropy H (p) of the distribution p, wheress the first sum is an entropy-like
term in which both distributionsappear. We will call thisfirst term the cross-entropy® H,(q), giving

D(pllg) = Hy(q) + H(p)

3In the literature the terms relative entropy an cross-entropy are often used synonymously, to refer to both D(p||¢) and Hy(g). The
probable reason is that for minimization either can be used (see below). We find it both useful and intuitive to make the distinction as
done here—think of Hy(g) asa‘cross-over’ between H (p) and H(q).
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It can be shown that H,(¢) > H(p) aways, with equdity if and only if the two distributionsare identical. It
followsthat D(p||q) > 0, with D(p||q) = 0iff p = ¢q. Thisjustifiesthinking of D(p||¢) as a pseudo-distance
between distributions, or between distributionsand models.*

Computing D(p||q) exactly presumes knowledge of the full distributions p and ¢, but in typical
scenarios at most oneis known, e.g., because it is given by amodel. For example, we might use the relative
entropy to define an estimator for model parameters, such that the estimated value is that which minimizes
D(p||L(M)), where p isthe distribution from which the samples are drawn. Since p isnot known, we cannot
compute D directly. However, note that for minimization purposes only the H,(¢) termisrelevant, H(p) is
an unknown constant, but one that remains fixed as M/ isvaried. This leaves H,(q¢) to be minimized, which
isthe expected value of —log(q) under thetrue distribution p(z). It can therefore be estimated by averaging

over the sample corpus X

H,(p) ~ _% Z logq(x) (2.10)

reX
We thus see that estimated cross-entropy is proportional (by a factor of — ﬁ) to the log of the

likelihood. Therefore, ML estimators are effectively aso minimum relative entropy estimators.

2.3 Grammarswith hidden variables

Although al grammars considered here generate their samples through a combination of multino-
mials, the sequence of choices that can give riseto a given sample is not aways uniquely determined, unlike
for n-gram grammars. There, one can uniquely identify the sequence of choices leading to the generation
of a complete string, by inspecting the n-grams occurring in the string in left-to-right order. Knowing the
n-grams, one can then compute their probabilities, and hence the probability of the string itself (by taking
products).

A complete sequence of generator events (multinomia samples) that generate string = iscaled a
derivation of xz. (Thus, for n-gram models the only derivation of a strings is the string itself.) Grammars
that generate strings with more than one derivation are called ambiguous. Each derivation d has a probability
which isthe product of the probabilities of the multinomial outcomes making up the derivation. In general,
then, a string probability is a sum of derivation probabilities, namely, of al derivations generating the same
string:

P(z|M)= Y P(dM)

d derives z
We can think of a derivation (or parts thereof, if it can be conveniently decomposed), as an
unobserved, ‘hidden’ random variable.

4However, relative entropy is not symmetric and does not obey the triangle inequality.
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2.3.1 Mixturegrammars

A simple example for this are grammars that generate strings from two subsidiary, component
grammars, M and M,. Thefirst step in a derivation is choosing which of the two submodels is to generate
the string, according to a single mixture probability x. Following that, the chosen submodel generates the

string according to whatever distribution it represents. The total probability of x isthus
P(z|p, My, M) = pP (x| M) + (1 p) P(X|Mo) (2.1

or a weighted mixture of the component distributions. This type of model can obviously be generdized to
any number of components (including non-finitemixtures). It isin a sensethe probabilisticversion of aunion
of formal languages. The key feature in this context isthat a string = that can be generated by both A7; and
M has at least two possible derivations, whose identity is not observable.

Mixing modelsisa so knownin thelanguage modeling literatureasinterpolation (Bahl et al. 1983).
Thetermismost often used when the mixture proportionsare estimated from independent training data, rather

than using the EM algorithm, described next.®

2.3.2 Expectation-M aximization

Hidden variables (or ambiguity) in grammars creste an additional problem for parameter estimation
as the observed outcomes for the multinomialsin the grammar become ambiguous as well, and can no longer
be simply counted for use with estimators like (2.8).

In many cases the estimation in the face of hidden variables can be solved using a general technique
called expectati on-maximization(Dempster et al. 1977), or EM. Intuitively, sincethelikelihoodistheobjective
functionto be maximized, but some supposedly knowntermsinit are not avail able(e.g., thestring derivations),
oneproceedsby ‘ guessing’ thevalues of the unobserved hidden variabl es (the E-step), and then maximizesthe
likelihood over the parameters given both the guessed values and the known observables (the M-step). Since
the reestimation may affect the guessing process oneiterates the two steps until the procedure convergesto a
set of parameter values. The guessed values are typically the expectations of the unknown statistics needed
to compute the likelihoods, hence the name of the E-step.® It can be shown that on each EM iteration the
likelihood is hon-decreasing, thus converging to alocal maximum in the parameter space. This leaves open

whether locd likelihood maximization is good enough in practice, a question we will return to.

5The term deleted interpolation refers to the holding-out method used in estimating the mixture proportions.
8Thisisasimplified characterization. In full generality, one maximizes the expectation of thelog likelihood function, i.e., the E-step
consists of determining the function
L(6") = Ep(qz,6) l0g P(,d|6'),
where ¢ are the fixed current parameters, d the hidden variables, and = the observed variables. For many standard distributions (in
particular, those of the exponential family), the expected log likelihood is the log likelihood assuming the sufficient statistics take on
their expected values. For example, for the multinomial:

ElogP(z,d|6) = E Y cilogti = » _(Fe;)logh;
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EM for mixtures As a brief illustration of the EM method we consider the case of the simple mixture
mode (2.11) (Redner & Walker 1984). In the E-step we compute the expected values for the counts ¢;, the
number of times submode i was used to generate a string. Since the samples are independent, this can be
done by summing fractional expected counts, i.e., posterior probabilitiesfor the samples coming from each
of the mixture components:

Eci =Y P(di|e, M) (2.12)

zeX

whered; = 1iff submodel A; was chosen to generate 2, and d; = 0 otherwise. This posterior probability of

asubmodel generating = can be computed using Bayes' Law:

P(d;| M) P(x|d;, M)
P(2| M)
pi P (x| M;)
P(z|M)

P(di|z, M) =

In the two-component case, i1 = pand g = 1 — p.

We obtain the intuitive result that the ‘ expected attribution’ of a sample « to one of the submodels
M; is proportional to how well that submodel ‘explains the sample, measured by its likelihood P(z|M;),
weighted by the prior probability of choosing M.

2.3.3 Viterbi derivationsand approximate EM

Often oneisinterested in the single most likely derivation for astring = withinamode M,
argmax P(d|z, M)
d

Thisis caled the Viterbi derivation of z, and is some sense the ‘best’ explanation of = within M (Viterbi
1967). Finding the Viterbi derivation is the canonical way to disambiguate a string = using probabilistic
grammar M.

Another important use of Viterbi derivations is in approximating the full probability of a string,
which is obtained by summing over dl itsderivations:

P(a|M) =Y P(ald, M)P(d|M) ~ max P(x|d, M) P(d| M)

By definition, the maximum in the approximate term is achieved by choosing d to be the Viterbi derivation.
The Viterbi approximation of thelikelihoodisal so frequently used in simplifyingthe EM agorithm.
Instead of maximizing with respect to the true expectations of hidden variables, one approximates the
expectations by counting as if the Viterbi derivation had occured with probability one. For example, to
estimate the mixture proportion in (2.11) using Viterbi, one would replace FE'¢; by the number of times

submodel M; was the a posteriori more probable of the two.”

“If the submodels themselves are ambiguous then this leaves open two possibilities: either one counts the most probable joint
derivations (component choice + most likely derivation within the component), or simply the most probable component choice using
the full submodel likelihoods (summing over al derivation within the submodels). The latter is the better approximation, but the former
may be more practical to compute.
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Figure2.1: Simple HMM.

State names appear within circles, outputs above their emitting states.

2.34 Hidden Markov Modds

Hidden Markov Models (HMMs) are the probabilistic counterpart of nondeterminigtic finite au-
tomata (NFAS) (Hopcroft & Ullman 1979). As NFAs, HMMs have a finite number of states, including the
initial and fina ones. States are connected by transitions and emit output symbols from a finite, discrete
alphabet. (HMMs can aso be defined to emit output symbols on the transitions rather than at states, asis
usua with NFAs. However, the two variants are equivalent and can be converted into each other.) AsNFAS,
HMMs generate (or accept) strings over the output alphabet by nondeterministic walks between the initial
and final states. In addition, HMMs also assign probabilitiesto the stringsthey generate, computed from the
probabilities of individual transitions and emissions. A sequence of states, or path, leading from initia to
final state constitutesan HMM derivation in the sense introduced above.

HMMs get their name from the the fact that the underlying state sequence is the result of a Markov
process, which is ‘hidden’ from observation by a corresponding, but non-unique sequence of emissions. We
will be discussing only first-order HMMs where state dependencies are on the immediate predecessor only;
higher-order HMMs can have states depending on a limited number of predecessors. Higher-order HMMs
may be transformed into equivalent first-order ones.

HMM are aso used in the modeling of unbounded strings, in which case there are no fina states.
Instead, under certain reachability conditions, the moddl settles into a unique stationary distribution of states
and outputs (eg., Cover & Thomas (1991)). Also, thereis no reason why the model is limited to discrete
outputs. Continuousoutput distributionsare commonly used in modeling speech, for example. However, we
will restrict ourselves to finite string generation and discrete outputs.

A formal definition of HMMs will be deferred to Chapter 3. Instead, we will illustrate the basic
notions by way of an example (Figure 2.1).

The model generates strings from the regular language (a(a U b))*. All transition and emission
probabilitiesare 1 except where labeled otherwise. The exceptions are at state 2, which outputsa or b with
probability 0.5 each, and where transitions occur to either state 1 or the final state 7', again with probability
0.5.

Being a probabilistic model, it assigns probabilitiesto strings according to possible paths through
themodel. A pathisasequence of statesfrominitial tofina state, and isthe HMM version of aderivation, in
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S-->a
-->b
--> 0.1
-->a Sa .
-->b Sb 0.1

Figure 2.2: Simple stochastic context-free grammar generating palindromes

the general senseintroduced earlier. P(z| M) isthe sum of al thejoint probabilitiesof random walksthrough
the mode (i.e., derivations) generating z.

In the example HMM, the string abaa is generated by only a single path through the model, and
hence

P(abaa|M) = p(qr — q1)p(q1 1 a)p(q1 — q2)p(g2 1 b)

pla2 — q)p(q1 T a)p(qr — 2)p(q2 T a)p(q2 — qr)
(0.5)* = 0.1375.

The conditional probabilitiesin the product are the individual transition and emission probabilities. The fact
that each is conditional only on the current state reflects the Markovian character of the generation process.

2.3.5 Stochastic Context-free Grammars

Stochastic context-free grammars (SCFGs) are the natural extension of context-free grammars
(CFGs) to the probabilistic realm. We again present a simple example and leave the formal presentation to
Chapter 4.

Each context-free productionisannotated with the conditional probabilitythat it ischosen amongall
possible productionswhen the left-hand side nonterminal is expanded. Figure 2.2 shows a SCFG generating
all the palindromes over the aphabet {a, b}. A derivationin thiscase is the usua tree-structure (parse tree)
arising from the nonterminal expansions, and its probability is the product of the probahilities of the rules
involves. Hence, the string abbba is generated with probability 0.4 x 0.1 x 0.1 x 0.2, corresponding to the
only derivation of thisstring in the grammar.

Notice how the notion of context-freeness has been extended to include probabilistic conditional
independence of the expansion of a nonterminal from its surrounding context. Thisturns out to be crucial to
keep the computationa properties of SCFGs reasonable, but it is also the magjor drawback of SCFGs when
using them to model, say, natural language. We will return to this problem at various pointsin the following
chapters.
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24 Levelsof Learning and Model Merging

24.1 Beyond parameter estimation

Learning of probabilistic language models from data involves the choice of a model that best
represents the distribution that generated the samples. We can identify three levels at which choices are
involved:

a) Choice of amode class (n-gram, finite-state, context-free, mixture of severa of these, etc.).
b) Choice of amodel structure (how many states, nonterminals, what productions, etc.)
¢) Choice of parameters (n-gram probabilities, transition probabilities, etc.)

So far we have briefly addressed (c), with maximum likelihood and EM estimators. These arein
fact the established methods for all of the language models discussed in thisthesis. The main contribution of
the thesis will be to (b), the choice of model structure. Level (a) is currently left to the human designer of a
learning system. The fundamental problem of model design will be briefly discussed inin Chapter 8.

The boundaries between (a) and (b), as well as between (b) and (c), are inherently fuzzy, due
to subsumption between representations. For example, in a finite-state model the presence or absence
of transitions can be represented either as part of the model structure (level b) or a continuous transition
probability parameter (level c), where probability zero effectively represents the absence of a transition.
These two representation correspond to very different learning approaches: to learn (b) the learner has to
make discrete decisions, whereas for (c) learning typically is accomplished by gradual adjustment of the
continuous parameters (using EM, gradient ascent, etc.).

Similarly, when faced with a choice between different model classes (level @) it is often possibleto
devise a generalized class that subsumes the alternatives in question. For example, the class of probabilistic
context-free model s contains finite-state model s as a specia case. One can then hope that whatever structure
learning method is used (level b) will pick out the right type of model. In practice thisis not quite so
straightforward since one might end up with a model structure that doesn’t fall neatly into any of the target
classes.

24.2 Mode merging

The approach to the structural learning problem for probabilistic grammars pursued in thisthesis
is conceptually based on a rather general method recently advocated by Omohundro (1992) called model
merging. Many of thekey ingredientsof thismethod are very old and can be foundin a gorithmsfrom severa
disparate areas dealing with various incarnations of the data modeling task. Omohundro argues that there
are domain-independent principlesat work that |lend the model merging approach generdity, efficiency and a
certain degree of cognitive plausibility.

Thebasicideaisthat amodd of adomainisconstructed from submodels. When only asmall amount
of dataisavailable, the submodels consist of the data pointsthemsel ves with similarity-based generalization.
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Asmoredatabecomes avail able, submodel s from more complex familiesmay beconstructed. The el ementary
induction step isto successively merge pairs of simple submodelsto form more complex submodels. Because
the new submode isbased on the combined data from the merged submodels, it may be reliably chosen from
a more complex model space. This approach alows arbitrarily complex models to be constructed without
overfitting. The resulting models adapt their representational power to the structure of the training data.

The search for submodels to merge is guided by an attempt to sacrifice as little of the sample
likelihood as possible as a result of the merging process. This search can be done very efficiently if (a) a
greedy search strategy can be used, and (b) likelihood computations can be done locally for each submodel
and don't require globa recomputation on each model update.

24.3 A curvefittingexample

This idea can be illustrated with task from geometrical data modeling. Consider the problem
of modeling a curve in the plane by a combination of straight line segments. The likelihood in this case
corresponds to the mean square error from each curve point to the nearest ssgment point.2 A merging stepin
this case consists of replacing two segments by a single segment. We aways choose that pair such that the
merged segment increases the error theleast. Figure 2.3 shows the approximations generated by this strategy.
It does an excellent job at identifying the essentialy linear portions of the curve and puts the boundaries
between component models at the corners. While not shown in the figure, as repeated merges take place,
more datais available for each segment. Thiswould alow us to reliably fit submodels more complex than
linear segments, such as Bezier curves. It is possible to reliably induce a representation which uses linear
segments in some portionsand higher order curvesin others. Such models potentially have many parameters
and would be subject to overfitting if they were learned directly rather than by going through merging steps.

Model merging has an obvious converse in iterative model splitting. In the curve example, this
top-down approach would start with a single segment and repeatedly splitit. Thisapproach sometimes hasto
make decisionstoo early and often missesthecornersinthecurve. Althoughthisisclearly domain-dependent,
our experience has been that modeling approaches based on splitting tend to fit the structure of adomain less
well than those based on merging. Mode splitting approaches for grammatica models have been proposed
by various authors and will be discussed in Chapter 3.

244 Knowingwhen to stop

A crucia factor in model merging is the stopping criterion. Since each merging step is a potentia
generalization step in the model space, the stopping criterion effectively determines how much generalization
from the observed datatakes place.

The criteria used can be of atheoretical, heuristic or practical nature. The following represents a
non-exhaustive list of candidates:

8More precisely, the mean squared error is proportional to the log probability of the data under the assumption that each curve
generates points normally distributed around them.
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e
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Error = Error = Error = Error =10 Error = 20

Figure 2.3: Approximation of a curve by best-first merging of segment models.
The top row shows the endpoints chosen by the algorithm at variouslevels of alowed error. The
bottom row shows the corresponding approximation to the curve.
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Global modd characteristics If the target model has a known global characterization, i.e., in terms of its
size, then merging can be stopped as soon as a model is reached that matches those criteria. Another

reason to use global criteria such as size are resource limitationsthat the resulting model should fit.

Error tolerance The model’sfit to the data can often be described in terms of 10oss measure (such as squared
error or negativelog likelihood). Merging then proceeds until a maximum error is exceeded.

Cross-validation Limiting the error on the training data is of course no guarantee for a similarly limited
error on new data. Standard techniques to control the generalization error can be applied, such as
cross-validation on a separate data set (i.e., merging stopswhen the model’ serror on the validation data
increases).

Thresholding heuristics Instead of imposing fixed boundson error or log likelihood one can adternatively use
the difference in these measures that result from merging to control overgeneralization. Itisempirically
often the case that a merging step beyond the target model produces loss differentials that are large
compared to thoseincurred in the merging steps leading up to the desired model.

The Bayesian approach to model merging developed in this thesis does not fit into any single one
of these categories. Instead, it can be viewed as formalizing atrade-off between several of these criteria.

2.5 Bayesian Model Inference

251 Theneed for inductivebias

In the model merging framework, learning from sample data means generalizing fromit. A simple
maximum likelihood approach would not result in generalization, as the class of modelsisusually rich enough
to allow asimple duplication of the sample dataitself. Thisisdifferent from traditional parameter estimation
approaches where the fixed modd structure constrains the maximum likelihood solution, thereby leading to
generaization. The goal of model merging, of course, isto determine the right model structurefrom the data,
instead of having it specified a priori.

An intuitivejustification for prefering more general modelswith lower likelihood over ML models
isthat the former are simpler in some sense. In particular, since the ML modelsin model merging grow with
the amount of data supplied, their size would be unbounded unless the sample space itself isfinite.

Simplicity or complexity is an important and well-known form of inductive bias (Mitchell 1980).
It is dso known as ‘Occam’s Razor’ following William of Occam’s dictum not ‘to multiply things beyond
necessity, i.e, that given two explanations for an empirical fact, the one with less assumptions is to be
preferred. A crude form of simplicity metric is embodied in the model merging processitself: as submodels
are merged, the total model size, suitably defined, typically decreases.

However, what is realy needed is a principled approach to trade off the inductive bias towards
simpler models against the fit of the model to the observed data. We have seen that it is not useful to fit the
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data perfectly; on the other hand, only maximizing simplicity would lead to models that bear no relation to
the actua distribution generating the data. We therefore need aformal notion of both model complexity and
fit to the data, such that the trade-off between the two can be quantified.

In this section we will present two such formalizations, Bayesian inference and inference by
Minimum Description Length. These two approaches turn out to be essentially equivalent, but will provide
two complementary conceptualizations of a particular form of probabilisticinductive bias.

The principles discussed here are by no means unique to the probabilistic scenario. For example,
thefutility of exactly matching themodel to thedata, and theresulting need for inductivebias, isdemonstrated
by Mitchell (1980) for the case of discrete classifier induction.

2.5.2 Posterior probabilities

We can expressour a priori preferences regarding alternative model s (for simplicity or otherwise) in
probabilistic terms using the Bayesian notion of prior probability. We assume that there exists a distribution
P (M) independent of the data that assigns each moddl M an a priori (before the data) probability. Thisis
clearly aprobabilisticform of bias, asit presumably gives some models higher prior probability than others.

Given some data X we can then endeavor to find the model M that maximizes the posterior
probability P(M|X). Bayes Law expresses the posterior as
P(M)P(X|M)

P(X)
Sincethedata X isfixed, Mmap maximizes P(M)P(X|M), where P(X|M) isthefamiliar likelihood. The

resulting model aso know as the MAP (maximum a posteriori probability) model.

P(M|X) = (2.13)

This form of Bayesian model inference is therefore a generalization of the Maximum-Likelihood
(ML) estimation method, as the prior P(M) is combined with the usud likelihood term P(X|M) for

maxi mi zation purposes.

25.3 Bayesan Model Merging

It isaso easy to modify any given likelihood-based model merging strategy to accommodate prior
probabilities. Two basic changes need to be made:

e Each merging step should maximize the model posterior instead of the model likelihood.

e The stopping criterion is that no further increase in model posterior is possible through one choice of
the possible merging steps.

As before, this Bayesian model merging variant carries out a greedy search of the model space,
whose topology isimplicitly defined by the merging operators. The goal of the search is now to find aloca
maximum of the posterior probability.

Note that given our search strategy there are really two forms of bias at work in this modified
induction strategy:
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e Anexplicit, probabilistic bias expressed by the prior P(M).

e Animplicit, heuristic bias as part of the choice of the topology of the search space (the search bias).
Even if the merging operator(s) are defined such that al models in the space are reachable from the
initial modedl, thisbhiasisstill significant duetothelocal and sequential natureof the posterior probability
maximization.

We will return to the question of how to relax the search bias by using less constrained search methods
(Section 3.4.5).

The remaining section of this chapter present some of the common mathematical tools needed in
instantiating the Bayesian model merging approach in the domain of probabilistic grammars. The following

chapters 3, 4 and 5 each describe one such instantiation.

254 Minimum Description Length

Bayesian inference based on posterior probabilities has an aternative formulation in terms off
information-theoretic concepts. The duaism between the two formulations is useful both for a deeper
understanding of the underlying principles, and for the construction of prior distributions (see Section 2.5.6
below).

The maximization of

P(M,X)= P(M)P(X|M)

implicitin Bayesian model inference is equivalent to minimizing
—logP(M,X)=—logP(M)—log P(X|M)

Information theory tells us that the negative logarithm of the probability of a discrete event E isthe optimal
code word length for communicating an instance of F, so as to minimize the average code length of a
representative message. Accordingly, the terms in the above equation can be interpreted as message or
description lengths.

Specificaly, —log P(M) is the description length of the model under the prior distribution;
—log P(X|M) corresponds to a description of the data X using M as the model on which code lengths
are based. The negativelog of thejoint probability can therefore be interpreted as the total description length
of model and data

Inference or estimation by minimumdescription length (MDL) (Rissanen 1983; Wallace & Freeman
1987) isthus equivalent to, and a useful aternative conceptualization of posterior probability maximization.®

9The picture become somewhat more complex when distributions over continuous spaces are involved. For those the corresponding
MDL formulation hasto consider the optimal granularity of the discrete encoding. We will can conveniently avoid this complication as
the only formal use of description lengthswill beto devise priors for discrete objects, namely, grammar structures.
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255 Structurevs. parameter priors

A grammatical modd is here described in two stages:

1. A modé structure or topology is specified as a set of states, nonterminals, transitions, productions, etc.
(depending on the type of moddl). These elements represent discrete choices as to which derivations

from the grammar can have non-zero probability.

2. Conditiona on agiven structure, the model’s continuous parameters are specified. These are typically
multinomia parameters.

We will write M = (Ms, 63r) to describe the decomposition of model M into the structure part
M and the parameter part 65,. The model prior P(M) can therefore be written as

P(M)= P(Ms)P(0p|Ms)

Even this framework leaves some room for choice: as discussed earlier, one may choose to make
the structure specification very unconstrained, e.g., by allowing all probability parameters to take on non-zero
values, effectively pushing the structure specification into the parameter choice. Examples of this will be
discussed in the following chapters.

2551 Priorsfor multinomial parameters

Since the continuous parameters in the grammar types dedlt with in thisthesis are all from multi-
nomia distributions, it is convenient to discuss some standard priors for this type of distribution at this
point.

Each multinomid represents a discrete, finite probabilistic choice of some event. Let n be the
number of choices in amultinomial and, 8 = (64, ..., 6,) the probability parameters associated with each
choice (only n — 1 of these parameters arefreesince ), 6; = 1).

A standard prior for multinomialsisthe Dirichlet distribution

1 n
PO = — TJox"t | 2.14
(6) B(al,...,an);[[ll (214)
where oy, . . ., a, are parameters of the prior which can be given an intuitive interpretation (see below). The
normalizing constant B(«1, . . ., oy, ) isthe n-dimensional Betafunction,

[(ag) ---T(an)
Tlar+ -+ ap)

B(ag,...,an) =

The prior weights «; determine the bias embodied in the prior: the prior expectation of ¢; is 5=, where
ag = ), o isthetotal prior weight.

One important reason for the use of the Dirichlet prior in the case of multinomia parameters
(Cheeseman et al. 1988; Cooper & Herskovits 1992; Buntine 1992) is its mathematical expediency. It is
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a conjugate prior, i.e, of the same functional form as the likelihood function for the multinomial. The
likelihood for a sample from the multinomial with total observed outcomes ¢y, . . ., ¢, iS given by equation
(2.4). Thismeans that the prior (2.14) and the likelihood (2.4) combine according to Bayes law to give an
expression for the posterior density that is again of the same form, namely:

1 n
P(Blcy,. .. cn) = et 215
(Blex, - cn) B<cl+a1,...,cn+an)g Z o

Furthermore, it is convenient that theintegral over the product of (2.14) and (2.4) has a closed-form solution.

n

1
P(O)P(c1, ..., ca|0)d8 = 7/ gritoi—14g
fyr@ren. oo = ot—s [T1
B(cl+ala~~~1cn+an)
= 2.16
B(ai, ..., o) ( )

Thisintegra will be used to compute the posterior for a given model structure, as detailed in Sections 2.5.7
and 3.4.3.

To get an intuition for the effect of the Dirichlet prior it is helpful to look at the two-dimensional
case. For n = 2 thereisonly one free parameter, say #1 = p, which we can identify with the probability of
heads in a biased coin flip (62 = 1 — p being the probability of tails). Assume thereisno a priori reason
to prefer either outcome, i.e, the prior distribution should be symmetrical about the value p = 0.5. This
symmetry entails a choice of «;’swhich are equal, in our case a1 = a2 = «. Theresulting prior distribution
is depicted in Figure 2.4(a), for various values of «w. For «; > 1 the prior has the effect of adding a; — 1
‘virtual’ samples to the likelihood expression, resulting in aMAP estimate of

ci+a;—1
>oilej + a5 —1)
For 0 < a; < 1the MAP estimate is biased towards the extremes of the parameter space, §; = Oand §; = 1.
For a; = 1 theprior isuniform and the MAP estimate is identical tothe ML estimate.

6; = (2.17)

Figure 2.4(b) shows the effect of varying amounts of data N (total number of samples) on the
posterior distribution. With no data (N = 0) the posterior isidentical to the prior, illustrated here for o = 2.
As N increases the posterior peaks around the ML parameter setting.

25.6 Description Length priors

The MDL framework is most useful for designing priors for the discrete, structura aspects of
grammars. Any (prefix-free) coding scheme for models that assigns M a code length ¢( M) can be used to
induce a prior distribution over modelswith

P(M) x et

We can take advantage of thisfact to design ‘naturd’ priorsfor many domains. Thisideawill be extensively
used with al grammar types.
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(a) Prior distributions for various prior weights «. (b) Posterior distributionsfor « = 2.0 and
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Figure 2.4: The two-dimensional symmetrical Dirichlet prior.

various amounts of data N = ¢; + ¢, inthe proportione; /N = 0.1.
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25.7 Posteriorsfor grammar structures

The Bayesian approach in its simplest form computes the posterior probability of a fully specified
model,
P(M|X)x P(M)P(X|M) ,

and compares dternative models on that basis. If the goal is to find a single model that best represents the
data, this approach amounts to a joint maximization of the posterior P(A/|X') over both the model structure
Mg and its parameters 6y .

Alternatively, we may want to infer asingle grammar M and view it as a representative of a class
of grammars obtained by varying the parameters 65, according to their posterior distribution, P (67| X, Ms).
For example, when new data X’ arrives, its probability is assessed as a weighted average over al parameter
settings.

P(X'|X, Mys) :/ P(0y| X, Ms)P(X'|Ms,01)d0ns (2.18)

s
Thisis motivated by the Bayes-optimal solution to the transductiveinference P(X’|X'), which would consist
of summing not only over all possible parameter settings, but over all possible model structuresas well:

P(X'|X) =" P(Ms|X) / P(Ox| X, Ms)P(X'|Ms, 637 )d0xs (2.19)
Ms 2%
Choosing asingle structure is an approximation to the full Bayesian solution, i.e,, averaging only over a part
of the full moddl space. To optimize this approximation we should choose the model structure M ¢ which
maximizes the associated posterior weight in equation (2.19),
P(M5|X)/ P(0ym|X, Ms)dfy = P(Ms|X)
s
Thisreasoning suggests changing the obj ectivefrom maximizing thejoint posterior probability of thestructure
and parameters together, to maximizing the posterior probability of the model structure aone. The desired
quantity is obtained by integrating out the ‘ nuisance’ variable 6, :
P(Ms)P(X|Ms)
P(X)
P(Ms)

- LMP(X,6M|MS)d0M

P(Ms|X) =

= P(MS)/Q P(0a|Ms)P(X|Ms,0x)d0ns . (2.20)

P(X)
Unfortunately, there is usualy no way to compute this integral exactly in closed form, since
P(X|Mg,0yr) is a sum over al possible derivations by M that can generate X, and whose respective
probabilities vary with 8,,. In practice we resort to Viterbi approximations of the quantities involved, as

described specifically for each model type in the following chapters.
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Chapter 3

Hidden Markov Models

3.1 Introduction and Overview

Hidden Markov Models (HMMs) are a popular method for modeling stochasti c sequences with an
underlyingfinite-state structure. Some of their first useswerein thearea of cryptanaysisand they are now the
model of choice for speech recognition (Rabiner & Juang 1986). Recent applicationsinclude part-of-speech
tagging (Kupiec 1992b) and protein classification and alignment (Haussler et al. 1992; Baldi et al. 1993).
Because HMMs can be seen as probabilistic generalizations of non-deterministic finite-state automata they
are aso of interest from the point of view of formal language induction.

For most modeling applicationsitisnot feasibleto specify HMMsby hand. Instead, theHMM needs
to beat least partly estimated from available sample data. All of the applications mentioned crucially involve
learning, or adjusting the HMM to such data. Standard HMM estimation techniques assume knowledge of
the modd size and structure (or topology) and proceed to optimize the continuous model parameters using
well-known statistical techniques. Section 3.2 defines the HMM formalism and gives an overview of these
standard estimation methods.

In contrast to traditional HMM estimation based on the Baum-Wel ch technique (Baum et al. 1970),
our model merging method adjusts the model topology to the data. The merging operator for HMMsis very
simple: itisreaized by collapsing two model states (aswell astheir transitionsand emissions). The resulting
algorithmis described in Section 3.3.

As aresult of our implementation and applications of the merging algorithm, a number of cru-
cia efficiency improvements, approximations and heuristics have been developed. These are discussed in
Section 3.4.

Model merging for HMMs is related to ideas that have appeared in the literature, in some cases
for considerable time. Section 3.5 discusses some of these links to related work and compares the various
approaches.

The Bayesian HMM merging algorithmiseval uated experimental ly using both artificial and realistic
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applications in Section 3.6. We compare its structure-induction capabilities to those of the Baum-Welch
method, and findthat it produces model sthat have better generalization and/or are more compact. Inparticular,
applicationsin the area of phonetic word modeling for speech recognition show that HMM merging can be
an effective and efficient tool in practice.

Section 3.7 summarizes the chapter and pointsto point to continuations of thisline of research.

3.2 Hidden Markov Models

3.2.1 Définitions
We now define formally the HMMs introduced in Section 2.3.4.1
Definition 3.1 A (discrete output, first-order) Hidden Markov Model is specified by
a) aset of states Q,
b) an output alphabet X,
c) aninitial state ¢y,
d) afinal stateqp,
and a set of probability parameters.
e) Transition probabilitiesp(g — ¢") specify the probability that state ¢ followsg, fordl ¢, ¢’ € Q.

f) Emission (output) probabilitiesp(q T o) specify the probability that symbol ¢ is emitted whilein state
q,foralge Qando € X.

By the structure or topology of an HMM we mean its states @, its outputs X, a subset of its
transitionsq — ¢’ with p(¢ — ¢') = 0 and asubset of itsemissionsq 1 o withp(q 1 o) = 0. In other words,
an HMM topol ogy specifies a subset of the potential transitions and emissions which are guaranteed to have
zero probability, and leaves the remaining probabilities unspecified.

We use superscripts on states ¢* and emissions ¢ to denote discrete time indicesin the generation

of an output sequence. Therefore,

ple—¢)=p((¢) ), t=0212 ...

and
p(g1o)=p(c'ld"), t=012...

Theinitial state gy occurs at the beginning of any state sequence and thefinal state ¢ at theend of
any compl ete state sequence. Neither ¢; nor ¢ can occur anywhere else, and they do not emit symbols. For

convenience weassume qr, qr ¢ Q.

1Where possible we try to keep the notation consistent with Bourlard & Morgan (1993).
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Definition 3.2 An HMM M is said to generate a string = z12»...2, € ¥* if and only if there is a
state sequence, or path, q192...q, € Q* with non-zero probability, such that ¢; outputs x; with non-zero
probability, for t = 1,...,£. The probability of a path (relative to z) is the product of al transition and
emission probabilitiesalong it.

The probability P(z| M) of astring z given an HMM M is computed as the sum of the probabilities
of al pathsthat generate z:

P(zIM)=" > plar — q)p(qr T 20)p(q1 — 42) ... p(ge T z)p(qe — qr) (3.1
q1--.¢:€Q*

There are some conditions on the probability parameters in an HMM necessary to ensure that
P(xz| M) as defined above forms a proper distribution over the set of finite strings.

e Transition probabilitieson each state have to sum to unity:

d pe—d)=1

q'eQ

e Emission probabilitieson each state have to sum to unity:

Y pgro)=1
cEX
o All statesreachable from ¢ by apath with non-zero probability must a so have a path to ¢ » of non-zero
probability. (Otherwisethere would be dead-end statesthat * capture’ some of thetotal probability mass
without contributing to the total distribution P(z|M).)

These well-formed Ness conditions are always satisfied when obtaining HMMs through one of the standard
estimation agorithms or through model merging, so they are of no immediate concern to us.

3.22 HMM estimation

The Baum-Welch estimation method for HMMs (Baum et al. 1970) assumes a certain topology
and adjusts the parameters so as to maximize the model likelihood on the given samples. If the structureis
only minimally specified (i.e, al probabilities can assume non-zero values) then this method can potentially
find HMM structures by setting a subset of the parameters to zero (or close enough to zero so that pruningis
justified).

The fundamental problemin HMM estimation isthat the state variables are not directly observable.
If they were, i.e, if we could observe sequences of states q142 . . . ¢¢ in addition to the outputs, estimation of
the probability parameters would be straightforward. One could collect sufficient statistics,

c(q—4q') = number of transitionsfrom state ¢ to ¢, for dl ¢,¢' € Q

e(q 7o) = number of outputsof o fromstateq, foral ¢ € Q,0 € 3,
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and set the model parameters to their maximum likelihood values:

R N clqg—1q)
ple—14q) = o d—5) (3.2)
ato) = <19 (3.3)
Ypesclal p)

Themissing state observationsare just aspecia case hidden variables, as discussed in Section 2.3.2.
Consequently, the EM method can be instantiated in this case: we replace the unknown transition and output
frequencies by their expected values given a current model estimate and the sample output sequences. For
each sample sequence = we compute the posterior probability P(q*|z, M) that the path generating = passes
through state ¢ at time¢. This can be done by an efficient O(¢|Q|?) dynamic programming agorithm know
as the forward-backward algorithm (see, eg., (Rabiner & Juang 1986)). From P(q’|z, M) for al q and ¢, it
isthen straightforward to compute the posterior expectations

¢g—4q) = FElelqg— )X, M]
c(qlo) = Ele(qg1 o)X, M].

Themodel parameters are then maximized with respect to the expectations ¢ instead of the unknown
values c. Re-estimating parameters affects the expectations, so ¢ has to be recomputed, parameters estimated
again, etc., until afixed point isreached.

Aswith EM in the general, the Baum-Welch method is not fool-proof: since it uses what amounts
to a hill-climbing procedure that is only guaranteed to find a local likelihood maximum, the result of Baum-
WEel ch estimation may turn out to be sub-optimal. In particular, resultswill depend on theinitia values chosen

for the model parameters. Several examples of this phenomenon will be seen in Section 3.6.1.

3.2.3 Viterbi approximation

A frequently used approximationin HMM estimation is to proceed as if each sample comes from
only a single path through the model, i.e., al paths except the most likely one are assumed to have zero or
negligible probability. The most likely, or Viterbi path (after Viterbi (1967)) is the one that maximizes the
summand in equation (3.1):

V(z|M)= agmax p(qr — qu)p(q1 1 z1)p(q1 — q2) .. .p(q¢ T 2e)p(ae — qF) (34)
q1...q1€Q*
Let V;(x|M) denote the ith statein V(x| M), with Vo(z| M) = ¢; and Vo41(z| M) = ¢F for convenience.

By neglecting all pathsexcept V' (z| M), the statisticsused in re-estimating transitionsand emissions
become sums of 0’'sand 1's. The resulting approximated estimates are

g —q) = ZZ«S 7, Vi(z|M))5(¢, Viga (x| M))

rzeX 1=0

Zzéq, (z|M))é(o, z:)

rzeX =1

¢(q10)
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where the Kronecker deltaé(z, y) is1if x = y and O otherwise.
We mention the Viterbi approximation here because it also turnsout to be very useful in an efficient
implementation of the HMM induction agorithm described in later sections.

3.3 HMM Merging

We can now describe the application of model merging to HMMs. First, the merging process
is described and illustrated using the simple, likelihood-only merging strategy. We then discuss priors for
HMMs, and finaly give a modified algorithm using the resulting posterior probabilities. Implementation
detailsarefilled inin Section 3.4.

3.3.1 Likelihood-based HMM merging

The model merging method requires four major elements:

1. A method to construct an initial model from data
2. A way to merge submodels.

3. An error measure to compare the goodness of various candidates for merging and to limit the general-
ization.

4. A strategy to pick merging operators, i.e., search the model space.
These elements can be trandated to the HMM domain as follows:

1. Aninitia HMM isconstructed as a digunction of all observed samples. Each sampleisrepresented by
dedicated HMM states such that the entire model generates all and only the observed strings.

2. Themerging step combinesindividual HMM statesand givesthe combined state emission and transition
probabilitieswhich are weighted averages of the corresponding distributionsfor the states which have
been merged.

3. The simplest error is the negative logarithm of the model likelihood. Later we show how thisis
generalized to a Bayesian posterior model probability criterion that provides a principled basis for
l[imiting generalization.

4. The default search strategy is greedy or best-first search, i.e,, a each step the states with give the best
score according to the evaluation function is chosen (other strategies are discussed in Section 3.4.5).
There is dso an issue as to how the incorporation of samples is scheduled relative to the merging
itself. For thetime being we assume that all samples are incorporated before merging starts, but amore
practical aternative will be given below in Section 3.3.5.
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To obtain an initial modd from the data, we first construct an HMM which produces exactly the
input strings. The start state has as many outgoingtransitionsasthere are stringsand each stringisrepresented
by a unique path with one state per sample symbol. The probability of entering these paths from the start
state is uniformly distributed. Within each path there is a unique transition to the next state, with probability
1. The emission probabilitiesare 1 for each state to produce the corresponding symbol.

The initial model resulting from this procedure has the property that it assigns each sample a
probability equa to its relative frequency, and is therefore a maximum likelihood model for the data, asis
generaly truefor initiadl modelsin the model merging methodology. In thissense theinitidl HMM isalso the
most specific model compatible with the data (modul o weak equiva ence anong HMMSs).

The merging operation, repeatedly applied to pairs of HMM states, preserves the ability to generate
all the samplesaccounted for by theinitial model. However, new, unobserved strings may & so begenerated by
themerged HMM. Thisinturn means that the probability massisdistributed among agreater number (possibly
an infinity) of strings, as opposed to just among the sample strings. The a gorithm therefore generalizes the
sample data.

Thedrop in the likelihood relative to the training samplesis a measure of how much generalization
occurs. By trying to minimize the change in likelihood, the agorithm performs repeated conservative
generdizations, until a certain threshold is reached. We will see later that the trade-off between model
likelihood and generalization can be recast in Bayesian terms, replacing the simple likelihood thresholding
scheme by the maximization of posterior model probability.

3.3.2 Anexample

Consider theregular language (ab)* and two samples drawn fromiit, the stringsab and abab. Using
the above procedure, the algorithm constructs the initial model A4 depicted in Figure 3.1.

From this starting point, we can perform two merging steps without incurring a drop in the model
likelihood.? First, states 1 and 3 are merged (M), followed by 2 and 4 (M>).

Merging two states entails the following changes to a modd:

e Theold states are removed and the new ‘merged’ stateis added. The old states are called the ‘ parent’
states.

e The transitionsfrom and to the old states are redirected to the new state. The transition probabilities

are adjusted to maximize the likelihood.

e Thenew stateisassigned the union of the emissions of the old states and the emission probabilitiesare
adjusted to maximize the likelihood.

In this example we use the convention of numbering the merged state with the smaller of the indices of its

parents.

2Actually there are two symmetrical sequences of merges with identical result. We have arbitrarily chosen one of them.



CHAPTER 3. HIDDEN MARKOV MODELS 33

log P(X|Mp) = —0.602

log P(X|M;) = —0.602

log P(X|M_) = —0.602

log P(X|M3) = —0.829

My: b log P(X|M4) = —0.829

0.67
SN
0

.33

Figure 3.1: Sequence of models obtained by merging samples {ab, abab}.

All transitionswithout specia annotationshave probability 1. Output symbolsappear abovetheir
respective states and also carry an implicit probability of 1. For each model, the log likelihood
(base 10) is given.
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Returning to the example, we now chose to merge states 2 and 6 (A/3). This step decreases thelog
likelihood (from —0.602 to —0.829) but it isthe smallest decrease that can be achieved by any of the potential
merges.

Following that, states 1 and 5 can be merged without penalty (M,4). The resulting HMM is the
minima model generating the target language (ab)*, but what prevents us from merging further, to obtain an
HMM for {ab}+ ?

It turnsout that merging the remaining two states reduces the likelihood much more drastically than
the previous, ‘good’ generalization step, from —0.829 to —3.465 (i.e, three decimal orders of magnitude). A
preliminary answer, therefore, isto set the threshold small enough to allow only desirable generdizations. A
more satisfactory answer is provided by the Bayesian methods described bel ow.

Note that further data may well justify the generalization to a model for {ab}*. Thisdata-driven
character is one of the centra aspects of model merging.

A domain-specific justification for model merging in the case of HMMs applies. It can be seen from
the exampl e that the structure of the generating HMM can aways be recovered by an appropriate sequence of
state merges from the initial model, provided that the available data‘ covers' all of the generating modd, i.e,
each emission and transitionisexercised at least once. Informally, thisis because theinitial model isobtained
by ‘unrolling’ the paths used in generating the samples in the target model. The iterative merging process,
then, is an attempt to undo the unrolling, tracing a search through the model space back to the generating
mode. Of course, the best-first heuristic is not guaranteed to find the appropriate sequence of merges, or, less
critically, it may result inamodel that is only weakly equivalent to the generating model.

3.3.3 Priorsfor Hidden Markov Models

From the previous discussion it is clear that the choice of the prior distribution is important since
it is the term in (2.13) that drives generdization. We take the approach that priors should be subject to
experimentation and empirical comparison of their ability to lead to useful generalization. The choice of a
prior represents an intermediatelevel of probabilisticmodeling, between the global choice of model formalism
(HMMs, inour case) and the choice of aparticular instancefromamodd class (e.g., aspecific HMM structure
and parameters). The model merging approach ideally replaces the usually poorly constrained choice of low-
level parameters with a more robust choice of (few) prior parameters. As long as it doesn’t assign zero
probability to the correct model, the choice of prior iseventually overwhelmed by a sufficient amount of data.
In practice, the ability to find the correct model may be limited by the search strategy used, in our case, the
merging process.

HMMs are a specia kind of parameterized graph structure. Unsurprisingly, many aspects of the
priors discussed in this section can be found in Bayesian approaches to the induction of graph-based models
in other domains (eg., Bayesian networks (Cooper & Herskovits 1992; Buntine 1991) and decision trees
(Buntine 1992)).



CHAPTER 3. HIDDEN MARKOV MODELS 35

3.3.3.1 Structural vs. parameter priors

As discussed in Section 2.5.5, an HMM may be specified as a combination of structure and
continuous parameters. For HMMs the structure or topology is given by as a set of states, transitions and
emissions. Transitions and emissions represent discrete choices as to which paths and outputs can have
non-zero probability in the HMM.

Our approach is to compose a prior for both the structure and the parameters of the HMM as a
product of independent priors for each transition and emission multinomial, possibly along with a global
factor. Although the implicit independence assumption about the parameters of different states is clearly
a simplification, it shouldn’t introduce any systematic bias toward any particular model structure. It does,
however, greatly simplify the computation and updating of the global posteriorsfor various model variants,
as detailed in Section 3.4.

The global prior for amodel A thus becomes a product

P(M) = P(Mg) [] P(M"|Me) P87 |Ma, M) (35)
q€eQ
where P(M¢) is a prior for global aspects of the model structure (including, eg., the number of states),
P(Mé”) isaprior contribution for the structure associated with state ¢, and P(HE&) |M_(qq>) isaprior on the
parameters (transition and emission probabilities) associated with state q.
Unless otherwise noted, the globd factor P(M¢) isassumed to be unbiased, and thereforeignored
in the maximization.

3.3.3.2 Parameter priorsfor HMMs

Since HMM transitions and emission probabilities are conceptually multinomials, one for each
state, we apply the Dirichlet prior discussed in Section 2.5.5.1. What the parameters are exactly depends on
the structure-vs.-parameter trade-off.

Narrow parameter priors A natura application of the Dirichlet prior is as a prior distribution over each
set of multinomia parameters within a given HMM structure M . Relative to equation (3.5), the parameters
of astate ¢ with n\?) transitionsand n'?’ emissions contribute afactor

(a)

n n(@)
1 : 1 =

POWIMe My = — = Tl =TTt . 3.6
(O3 Mg, Ms™) B(at,...,at)H 7 B(ae,...,ae)H 4 (36)

i=1 j=1
Here 6,; are the transition probabilities at state ¢, 7 ranging over the states that can follow ¢; 6,; are the
emission probabilitiesin state ¢, j ranging over the outputs emitted by ¢q. «; and «, are the prior weightsfor
transitions and emissions, respectively, and can be chosen to introduce more or |ess bias towards a uniform

gnment of the parameters.
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Broad parameter priors Inthe preceding version the parameters were constrained by the choice of amodel
structure M ¢. Asindicated earlier, onemay instead let the parameters range over all potential transitions (all
states in the model) and emissions (all elements of the output alphabet). Dirichlet priorsasin eguation (3.6)
can till beused, using n{? = [Q] and n!? = [3| for all states .

Oneinteresting aspect of this approach isthat at least the emission prior weights can be chosen to

be non-symmetrical, with prior means
o

B Zjaj

adjusted so as to match the empirical fraction of symbol occurrences in the data. This ‘empirical Bayes

E[6;]

approach is similar to the setting of prior class probability means in Buntine (1992).
We are aready working on the assumption that transitionsand emissions are a priori independent
of each other. It istherefore in principle possible to use any combination of broad and narrow parameter

priors, athough a full exploration of the possibilitiesremains to be done.®

3.3.3.3 Structurepriorsfor HMMs

In the case of broad parameter priors the choice of transitions and emissionsis already subsumed
by the choice of parameters. The only structural component Ieft open in this case is the number of states | Q).
For example, one might add an explicit bias towards a smaller number of states by setting

P(Ms) o C~1€l

for some constant C' > 1. However, as we will see below, the state-based priors by themselves produce a
tendency towards reducing the number of states as aresult of Bayesian ‘ Occam factors' (Gull 1988).

Inthecaseof narrow parameter priorswe need to specify how theprior probability massisdistributed
among all possible model topologies with a given number of states. For practical reasons it is desirable to
have a specification that can be described as a product of individual state-based distributions. This leads to
the following approach.

As for the trangitions, we assume that each state has on average a certain number of outgoing
transitions, n;. We don’'t have areason to prefer any of the | Q| possibletarget statesa priori, so each potential
transitionwill be assessed a prior probability of existence of p; = I%tl Similarly, each possible emission will
have a prior probability of p. = IHTI where n. isthe prior expected number of emissions per state.

The resulting structural contributionto the prior for a state ¢ becomes

P(MP| M) = pi (1= po)l @1ty (1 — pyyl=l=nl® (37)
Asbefore, n§q> represents the number of transitionsfrom state ¢, and n? the number of its emissions.

In MDL terms, the structura prior (3.7) corresponds to a HMM coding scheme in which each
transitionisencoded by — log p; bits, and each emissionwith — log p.. bits. Potential transitionsand emissions
that are missing each take up —log(1 — p;) and — log(1 — p. ) respectively.

3In the experimentsreported later only narrow parameters priors, combined with simple MDL structure priors are used. The details
can be found in the relevant sections.
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Description Length priors  We can usethe MDL framework as discussed in Section 2.5.6 to derive simple
priorsfor HMM structuresfrom various coding schemes. For example, anatural way to encode thetransitions
and emissionsinan HMM isto simply enumeratethem. Each transitioncan beencoded usinglog(|Q|+1) bits,
sincethereare | Q| possible transitions, plusa specia ‘end’” marker which alows us not to encode the missing
transitions explicitly. The total description length for al transitions from state ¢ is thus nﬁ“ log(|@Q| + 1).
Similarly, all emissions from ¢ can be coded using nt? log(|X| + 1) bits#

The resulting prior
(a) q
P(M | M) o (1Q]+ 1)~ (|5] + 1) (38)

hasthe property that small differences in the number of states matter little compared to differencesin thetotal
number of transitionsand emissions.

We have seen in Section 2.5.7 that the preferred criterion for maximization is the posterior of
structure P(Mg|X), which requiresintegrating out the parameters 657 . In Section 3.4 we give a solution for
this computation that relies on the approximation of sample likelihoodsby Viterbi paths.

334 Why aresmaller HMMspreferred?

Intuitively, we want an HMM induction algorithm to prefer ‘smaller’ models over ‘larger’ ones,
other thingsbeing equal. Thiscan beinterpreted as aspecia case of ‘ Occam’s razor,” or the scientific maxim
that simpler explanations are to be preferred unless more complex explanations are required to explain the
data

Once the notions of model size (or explanation complexity) and goodness of explanation are
quantified, this principle can be modified to include a trade-off between the criteria of simplicity and data
fit. Thisis precisdly what the Bayesian approach does, since in optimizing the product P(M)P(X|M) a
compromise between simplicity (embodied in the prior) and fit to the data (high model likelihood) is found.

But how isit that theHMM priorsdiscussed inthe previous section lead to a preferencefor * smaller’
or ‘simpler’ models? Two answers present themselves: one hasto do withthe general phenomenon of * Occam
factors found in Bayesian inference; the other is related, but specific to the way HMMss partition data for
purposes of ‘explaining’ it. We will discuss each in turn.

3.3.4.1 Occam factors

Consider thefollowing scenario. Two pundits, M; and M5, are asked for their predictionsregarding
an upcoming election involving anumber of candidates. Each pundit has his’/her own ‘model’ of the political
process. We will identify these models with their respective proponents, and try to evaluate each according

4The basic idea of encoding transitions and emissions by enumeration has various more sophisticated variants. For example, one
could base the enumeration of transitions on a canonical ordering of states, suchthat only log(n + 1) + logn + - - - + log(n — n; + 1)
bits are required. Or one could use the k-out-of-n-bit integer coding scheme described in Cover & Thomas (1991) and used for MDL
inferencein Quinlan & Rivest (1989). Any reasonable Bayesian inference procedure should not be sensitive to such minor differencein
the prior, unless it is used with too little data. Our goal hereis simply to suggest priors that have reasonable qualitative properties, and
are at the same time computationally convenient.
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to Bayesian principles. M; predictsthat only three candidates, A, B, and C' have a chance to win, each with
probability 64, = 0p, = 0, = % M> on the hand gives only A and B aredistic chance, with probability
04, = 0p, = 3. Candidate B turns out to be the winner. What is the posterior credibility of each pundit?

We marginalize over the (discrete) parameter space of each pundit’spredictions. The ‘data’ X is
the outcome of B’swinning.

P(My|X) « P

P(My|X) « P

Assuming that there is no a priori preference, P(M1) = P(M>), we conclude that M, is more likely a
posteriori. Thisresult, of course, just confirms our intuitionthat a prophet whose predictionsare specific (and
true) is more credible than one whose predictions are more general .

The ratio between the allowable range of a model’s parameters a posterior and a priori is known
as the Occam factor (Gull 1988). In the discrete case these ranges are just the respective numbers of
possible parameter settings: % versus % in the example. For continuous model parameters, the Occam factor
penalizes those model sin which the parameters have alarger range, or where the parameter space hasahigher
dimensiondity. (Thisis how the Bayesian approach avoids always picking the model with the largest number
of free parameters, which leads to overfitting the data.)

3.3.4.2 Effectiveamount of data per state

Prior to implementing (an approximation to) the full computation of the structure posterior for
HMMs as dictated by equation (2.20), we had been experimenting with a rather crude heuristic that smply
compared thelikelihoodsfor alternative model s, but evaluated at the MAP parameter settings. The prior used
was a Dirichlet of the broad type discussed in Section 3.3.3.2. As aresult, the structural prior itself, which
favors smaller configurations, was completely missing. Surprisingly at first, this alone produced a preference
for smaller models.

The intuitive reason for thisis a combination of two phenomena, one of which is particular to
HMMs. Asistruein general, the MAP point migrates towards the maximum likelihood setting as the amount
of dataincreases (Figure 2.4(b)). But in the case of HMMs, the effective amount of data per state increases
as states are merged!  In other words, as the number of statesin an HMM shrinks, but total amount of data
remains constant, each state will get to ‘see’ more of the data, on average. Therefore, merging the right
states will cause some states to have more data available to them, allowing the likelihood to come closer to its
maximum value.

SSimilar principles apply in other model merging applicationsin which the model effectively partitions the data for the purpose of
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3.35 Thealgorithm

After choosing a set of priorsand prior parameters, it is conceptualy straightforward to modify the
simple likelihood-based a gorithm presented in Section 3.3.1 to accommodate the Bayesian approach. The
best-first HMM merging a gorithm takes on the following generic form.

Best-first merging (batch version)
A. Buildtheinitial, maximum-likelihood model A7 from the dataset X.
B. Let: := 0. Loop:

1. Compute aset of candidate merges K among the states of model M.

2. For each candidate ¥ € K compute the merged model %(M;), and its posterior probability
P(k(M;)]|X).

3. Let k* bethemerge that maximizes P(k(M;)|X). Thenlet M; 11 1= k*(M;).
4. If P(M;41|X) < P(M;]X), return M; astheinduced model.

5. Leti::i+1.

In thisformulation ‘model’ can stand for either ‘“model structure + parameters’ or, as suggested in
Section 2.5.7, just ‘model structure” In discussing our implementation and results we assume the latter unless
explicitly stated otherwise.

Note that many of the computational details are not fleshed out here. Important implementation
strategies are described in Section 3.4.

The number of potential merges in step B.2, |K|, is the biggest factor in the total amount of
computation performed by the agorithm. Although |K| can sometimes be reduced by domain-specific
constraints (Section 3.4.2), it is generaly O(|@Q|?). Because || grows linearly with the total length of the
samples, thisversion of the merging algorithmis only feasible for small amounts of data.

An dternative approach isto process samplesincrementally, and start merging after a small amount
of new data has been incorporated. This keeps the number of states, and therefore the number of candidates,
small. If learning issuccessful, themodel will stop growing eventually and reach aconfiguration that accounts
for all new samples, at which point no new merges are required. (Figure 3.14 shows a size profile during
incremental merging in one of our applications.) The incremental character is aso more appropriate in
scenarios where data is inherently incomplete and an on-linelearning a gorithm is needed that continuously
updates aworking model.

Best-first merging (on-lineversion)
Let Mo betheempty model. Let i := 0. Loop:

explainingit.
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A. Get some new samples X; and incorporate into the current model A;.
B. Loop:

1. Compute a set of candidate merges K from among the states of model M.

2. For each candidate £ € K compute the merged model k(A4;) and its posterior probability
P(k(M;)]|X).

3. Let £* bethemerge that maximizes P(k(M;)|X). Thenlet M; 11 1= k*(M;).
4. If P(M;41]X) < P(M;|X), break from the loop.
5. Letz:=1¢ + 1.

C. If the datais exhausted, break from the loop and return M; as the induced model.

Incremental merging might in principle produce results worse than the batch version since the
evaluation step doesn’t have as much data at its disposal. However, we didn’t find this to be a significant
disadvantagein practice. One can optimizethe number of samplesincorporatedin each step A (thebatch size)
for overall speed. Thisrequiresbalancing the gainsdueto smaller model size against the constant overhead of
each execution of step B. The best value will depend on the data and how much merging is actually possible
on each iteration; we found between 1 and 10 samples at atimeto be good choices.

One has to be careful not to start merging with extremely small models, such as that resulting from
incorporating only a few short samples. Many of the priors discussed earlier contain logarithmic terms that
approach singularities (log0) in this case, which can produce poor results, usualy by leading to extreme
merging. That can easily be prevented by incorporating a larger number of samples (say, 10 to 20) before
going on to the first merging step.

Further modificationsto the simple best-first search strategy are discussed in Section 3.4.5.

3.4 Implementation |ssues

In thissection we elaborate on the implementation of the various stepsin the generic HMM merging
algorithm presented in Section 3.3.5.

3.4.1 Efficient sampleincorporation

In the simplest case this step creates a dedicated state for each instance of a symbol in any of
the samples in X. These states are chained with transitions of probability 1, such that a sample z1 ...z,
is generated by a state sequence qg, ..., ¢, g1 can be reached from ¢; via a transition of probability ﬁ
where | X| isthe total number of samples. State ¢, connectsto ¢z with probability 1. All states ¢; emit their
corresponding output symbol z; with probability 1.
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In thisway, repeated samples lead to multiple paths through the model, al generating the sample

string. Thetotal probability of astring » according to theinitial model isthus CI()?I) i.e, therelative frequency
of string z. It followsthat the initial model constitutes a maximum likelihood model for the data X'

Note that corresponding statesin equivalent paths can be merged without loss of model likelihood.
Thisis generaly what the merging loop doesinitsinitial passes.

A trivia optimization at this stage is to avoid the initial multiplicity of paths and check for each
new sample whether it isaready accounted for by an existing path. 1f so, only thefirst transition probability
has to be updated.

The idea of shortcutting the merging of samples into the existing model could be pursued further
along the lines of Thomason & Granum (1986). Using an extension of the Viterbi a gorithm, the new sample
can be aligned with the existing model states, recruiting new states only where necessary. Such an alignment
couldn’t effect all the possible merges, e.g., it wouldn't be able to generate loops, but it could further reduce

theinitial number of statesin the model, thereby saving computation in subsequent steps.®

3.4.2 Computing candidate merges

The general case hereisto examine al of the 3|Q|(|Q| — 1) possible pairs of statesin the current
model. The quadratic cost in the number of states explains the importance of the various strategies to keep
the number of statesin theinitia model small.

We have explored various application specific strategies to narrow down the set of worthwhile
candidates. For example, if the cost of a merge is usualy dominated by the cost of merging the output
distributions of the states involved, we might index states according to their emission characteristics and
consider only pairs of stateswith similar outputs. This constraint can beremoved later after al other merging
possibilities have been exhausted. The resulting strategy (first merging only same-outputs states, followed
by general merging) not only speeds up the agorithm, it is also generally a good heuristic in incremental
merging to prevent premature merges that are likely to be assessed differently in the light of new data

Sometimes hard knowledge about the target model structure can further constrain the search. For
example, word models for speech recognition are usually not allowed to generate arbitrary repetitions of
subsequences (see Section 3.6.2). All merges creating |oops (perhaps excepting self-loops) can therefore be
eliminated in this case.

3.4.3 Moded evaluation using Viterbi paths

To find the posterior probability of a potential model, we need to evaluate the structural prior
P(Mg) and, depending on thegoal of themaximization, either find the maximum posterior probability (MAP)
estimates for the model parameters 6, or evaluate theintegral for P(X|Mg) given by eguation (2.20).

MAP estimation of HMM parameters could be done using the Baum-Welch iterative reestimation
(EM) method, by taking the Dirichlet prior into account in the reestimation step. However, this would

6This optimization is as yet unimplemented.
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would require an EM iteration for each candidate model, taking time proportional to the number all samples
incorporated into the model.

Evduation of P(X|Mg), on the other hand, has no obvious exact solution &t all, as discussed in
Section 2.5.7.

In both cases the problem is greatly simplified if we use the Viterbi approximation, i.e, the
assumption that the probability of any given sampleis due primarily to a single generation path in the HMM
(Section 3.2.3).

Likelihood computation The exact model likelihood relative to adataset X is given by the product of the
individual sample probabilities, each of which is given by equation (3.1).
P(x|M) = ] P(z|Mm)
reX

H Z plar — q)p(qr T x0)p(q1 — q2) .- . p(qe T 20)p(9e — qF)

T€X q1...q,€Q*

where £ isthe length of sample z and ¢; . . . ¢, denotes a path through the HMM, given as a state sequence.
The Viterbi approximation implies replacing the inner summations by the terms with the largest
contribution:

P(X|M)~ [ max_ plar — qu)p(aa 1 20)p(es — 02) - -plar T 2e)p(ae — qr)
oex I .qe€Q*

The termsin this expression can be conveniently grouped by states, leading to the form

P(X|M)~ [] ( II rta — )= I a1 0)““‘”) (39)

7€Q \¢'€Q gEX
where c(q — ¢') and ¢(q | o) arethetotd counts of transitions and emissions occurring along the Viterbi
paths associated with thesamplesin X . We usethe notation ¢(#) for the collection of Viterbi counts associated
with state ¢, so the above can be expressed more concisaly as
P(X|M) =[] P(c'9|M)
q€Q
MAP parameter estimation  To estimate approximate M AP parameter settingsbased on Viterbi path counts,

the maximum-likelihood estimates as given by (3.2) and (3.3) are modified to include the *virtual’ samples
provided by the Dirichlet priors:

oy = —a—d)ta—1

ple—14q) = S ol =)t T (3.10)
. . c(q T 0') +a.—1

plglo) = S ka1t -1 (3.11)

The «o's are the prior proportions associated with the Dirichlet distributions for transitions and emissions

respectively, as given in equation (3.6). (These are here assumed to be uniform for simplicity, but need not
be.)
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Note that the summations in (3.10) and (3.11) are over the entire set of possible transitions and
emissions, which corresponds to a broad parameter prior. These summations have to be restricted to the

transitionsand emissionsin the current model structurefor narrow parameter priors.

Structure posterior evaluation To implement model comparison based on the posterior probabilities of
the HMM structures (Section 2.5.7) we need to approximate the integral

P(X|M5):/ P (03| Ms)P(X|Ms, 031)d0ns

Om
Wewill apply the usual Viterbi approximationto P(X | Mg, 6r), and assumein addition that the Viterbi paths
do not change as 6, varies. This approximation will be grossly inaccurate for broad parameter priors, but
seems reasonablefor narrow priors, wherethetopol ogy largely determinesthe Viterbi path. Moreimportantly,
we expect this approximation to introduce a systematic error that does not bias the evaluation metric for or
against any particular model structure, especially since the models being compared have only small structural
differences.
The Viterbi-based integral approximation can now be written as

P(X|M5)z/ P(0p|Ms) ] P(V(2)|Ms,0n)dbr,
% T€EQ

V(z) being the Viterbi path associated with z. The parameters 6, can now be split into their parts by state,
Or = (65\311), e QE&N)), and theintegral rewritten as

rocats) = [ [ (HP(HE&HMs)HP<c<q>|Ms,9§V?>) a0 ..ol
M M qeQ q€eQ
- 1I /6 o PO\ P Mg, 040)dp'Y) (3.12)
qeQ "M

The integrals in the second expression can be evaluated in closed form by instantiating the generic formula
for Dirichlet priorsgiven in (2.16).

Optimistic Viterbi path updating So far, the Viterbi approximation has allowed us to decompose each
of the likelihood, estimation, posterior evaluation problems into a form that alows computation by parts
organized around states. To take full advantage of this fact we also need away to update the Viterbi counts
(@) efficiently during merging. In particular, we want to avoid having to reparse all incorporated samples
using the merged model. The approach taken here isto update the Viterbi counts associated with each state
optimistically, i.e,, assuming that merging preserves the Viterbi paths.

During initial model creation the Viterbi counts are initialized to one, corresponding to the one
sample that each state was created for. (If initial states are shared among identical samples the initia
counts are set to reflect the multiplicity of the samples.) Subsequently, when merging states ¢; and ¢», the
corresponding counts are simply added and recorded as the counts for the new state. For example, given
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e(q1 — ¢') and e(q2 — ¢') inthe current model, the merged state ¢3 would be assigned a count
(g3 —q)=clgr— ')+ clg2— ¢)

Thisis correct if al samples with Viterbi paths through the transitionsq; — ¢ and g, — ¢’ retain their most
likely paths in the merged model, simply replacing the merged states with ¢3, and no other samples change
their pathsto include g3 — ¢'.

This path preservation assumption is not strictly true but holds most of the time, since the merges
actually chosen arethosethat collapse stateswith similar distributionsof transition and emission probabilities.
The assumption can be easily tested, and the counts corrected, by reparsing the training data from time to
time,

In an incremental model building scenario, where new samples are available in large number and
incorporated one by one, interleaved with merging, one might not want to store all data seen in the past. In
this case an exponentially decaying average of Viterbi counts can be kept instead. This has the effect that
incorrect Viterbi countswill eventually fade away, being replaced by up-to-date counts obtained form parsing
more recent data with the current model.

Incremental model evaluation  Using the techniques described in the previous sections, the evaluation of a
model variant due to merging is now possiblein O(|Q| + |X|) amortized time, instead of the O((|Q| + |X]) -
|Q| - | X]|) using anaive implementation.

Before evaluating specific candidates for merging, we compute the contributions to the posterior
probability by each state in the current model. The prior will usually depend on the total number of states of
themodel; it isset to the current number minus 1inthese computations, thereby accounting for the prospective
merge. Thetotal computation of these contributionsis proportional to the number of states and transitions, i.e.
O((1Q] + 12]) - |Q]). For each potential merge we then determine the parts of the model it affects; these are
precisely the transitions and emissions from the merged states, as well as transitionsinto the merged states.
The total number of HMM elements affected isat most O(|Q| + |X|). For all priorsconsidered here, as well
as the likelihood computations of (3.9) and (3.12), the old quantities can be updated by subtracting off the
terms corresponding to old model e ements and adding in the terms for the merged HMM. (The computation
is based on addition rather than multiplication since logarithms are used for simplicity and accuracy).’

Sincetheinitial computation of state contributionsisshared among all the O(|Q|?) potential merges,
the amortized time per candidate will also be on the order |Q| + |X|. Notethat thisis a worst case cost that
isnot redized if the HMMs are sparse asisusual. If the number of transitionsand emissions on each stateis
bounded by a constant, the computation will aso require only constant time.

"The evaluation of (3.12) involves computing multidimensional Beta functions, which are given as products of Gamma functions,
onefor eachtransition or emission. Therefore the addition/subtraction scheme can be used for incremental computation hereaswell. In
practice this may not be worth the implementation effort if the absolute computational expenseis small.
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34.4 Global prior weighting

As explained previoudly, the merging strategy trades off generalization for fit to the data. Gener-
alization is driven by maximizing the prior contribution, whereas the data isfit by virtue of maximizing the
likelihood. In practice it is convenient to have a single parameter which controls the balance between these
two factors, and thereby controls when generalization should stop.

From the logarithmic version of Bayes' law (2.13) we obtain

log P(M)+ log P(X|M)

as the quantity to be maximized. To obtain such aglobal control parameter for generalization we can modify
thisto include aprior weight A:
Alog P(M) + log P(X|M) (3.13)

For A > 1 theagorithmwill stop merging later, and earlier for A < 1.

The global prior weight has an intuitiveinterpretation as the reciprocal of a‘datamultiplier” Since
the absolute, constant scale of the expression in (3.13) isirrelevant to the maximization, we can multiply by
1 to get .

log P(M) + Y log P(X|M) = log P(M) + log P(X|M)*

This corresponds to the posterior given the data X repeated % times. In other words, by lowering the prior
weight we pretend to have more datafrom the same distributionthan we actually observed, thereby decreasing
the tendency for merging to generalize beyond the data. We will refer to the actual number of samples | X|
multiplied by % as the effective sample size. The quantity % is thus equivalent to the multiplier ¢ used in
Quinlan & Rivest (1989) to model the ‘ representativeness’ of the data.

Global prior weighting is extremely useful in practice. A good value for A can be found by tria
and error for a given amount of data, by starting with a small value and increasing A successively, while
cross-vaidating or inspecting the results. At each stage the result of merging can be used as theinitial model
for the next stage, thereby avoiding duplication of work.

Besides as a globa generaization control, A was aso found to be particularly helpful in counter-
acting one of the potential shortcomings of incremental merging. Since incremental merging has to make
decisions based on a subset of the data, it is especially important to prevent overgeneralization during the
early stages. We can adjust A depending on the number of samples processed to always maintain a minimum
effective sample size during incremental merging, thereby reducing the tendency to overgeneralize based on
few samples. Thisprincipleimpliesagradual increase of A as more samples areincorporated. An application
of thisisreported in Section 3.6.1.

3.45 Search issues

Section 3.3.5 has described the two basic best-first search strategies, i.e, batch versus incremental
sample processing. Orthogonal to that choice are various extensions to the search method to help overcome
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local posterior probability maxima in the space of HMM structures constructed by successive merging
operations.

By far the most common problem found in practice is that the stopping criterion is triggered too
early, since a single merging step alone decreases the posterior model probability, athough additional related
steps might eventually increase it. This happens athough in the vast majority of cases the first step isin
the right direction. The straightforward solution to this problem is to add a ‘lookahead’ to the best-first
strategy. The stopping criterion is modified to trigger only after a fixed number of steps > 1 have produced
no improvement; merging still proceeds along the best-first path. Due to this, the lookahead depth does not
entail an exponential increase in computation as afull tree search would. The only additional cost isthework
performed by looking ahead in vain at the end of a merging sequence. That cost is amortized over severd
samplesif incremental merging with abatch size > 1 isbeing used.

Best-first merging with lookahead has been our method of choice for aimost al applications, using
lookaheads between 2 and 5. However, we have also experimented with beam search strategies. In these, a
set of working modelsis kept at each time, either limited in number (say, thetop K scoring ones), or by the
differencein score to the current best model. On each inner loop of the search agorithm, al current models
are modified according to the possible merges, and among the pool thus generated the best ones according
to the beam criterion are retained. (By including the unmerged models in the pool we get the effect of a
lookahead.)

Some duplication of work results from the fact that different sequences of merges can lead to the
same final HMM structure. To remove such gratuitousduplicatesfrom the beam we attach alist of disallowed
merges to each model, which is propagated from a model to its successors generated by merging. Multiple
successors of the same model have the list extended so that later successors cannot produce identica results
from simply permuting the merge sequence.

The resulting beam search version of our algorithm does indeed produce superior results on data
that requires aligning long substrings of states, and where the quality of the alignment can only be evaluated
after severa coordinated merging steps. On the other hand, beam search is considerably more expensive than
best-first search and may not be worth a margina improvement.

All results in Section 3.6 were obtained using best-first search with lookahead. Nevertheless,
improved search strategies and heuristics for merging remain an important problem for future research.

3.5 Redated Work

Many of the ideas used in our approach to Bayesian HMM induction are not new by themselves,
and can be found in similar formsin the vast literatures on grammar induction and statistical inference.
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3.5.1 Non-probabilisticfinite-state models

At themost basic level we have the concept of state merging, whichisimplicitin the notion of state
equivalence classes, and as such is pervasively used in much of automata theory (Hopcroft & Ullman 1979).
It has a so been applied to the induction of non-probabilistic automata (Angluin & Smith 1983).

Still in the field of non-probabilistic automata induction, Tomita (1982) has used a smple hill-
climbing procedure combined with a goodness measure based on positive/negative samples to search the
space of possible models. This strategy is obviously similar in spirit to our best-first search method (which
uses a probabilistic goodness criterion based on positive samples aone).

Theincremental version of the merging algorithm, in which samples areincorporated into aprelim-
inary model structure one a atime, issimilar in spirit (but not in detail) to the automata learning agorithm
proposed by Porat & Feldman (1991), which inducesfinite-state modelsfrom positive-only, lexicographically

ordered samples.

3.5.2 Bayesan approaches

The Bayesian approach to grammatical inference goes back at least to Horning (1969), where a
procedure is proposed for finding the grammar with highest posterior probability given the data, using an
enumeration of al candidate models in order of decreasing prior probability. While this procedure can be
proven to converge to the maximum posterior probability grammar after afinite number of steps, it was found
to be impractica when applied to theinduction of context-free grammars. Horning's approach can be applied
to any enumerable grammatical domain, but thereisno reason to believe that the simple enumerative approach
would be feasiblein any but the most restricted applications. The HMM merging approach can be seen as an
attempt to make the Bayesian strategy workable by operating in amore data-driven manner, while sacrificing

optimality of the result.

3.5.3 Stategplitting algorithms

Enumerative search for finding the best model structureis also used by Bell et al. (1990)8 to find
optimal text compression models (for given number of number of states), although they clearly state that this
isnot afeasible practical approach. They also suggest both state merging and splitting as ways of constructing
mode structure dynamically from data, athough the former is dismissed as being too inefficient for their
purposes.®

Althoughtheunderlyingintuitionsare very similar, there are some significant conceptual differences
between our work and their compression-oriented approaches. First, the evaluation functions used are
invariably entropy (i.e., likelihood) based, and there is no formalized notion of a trade-off between model

8Thanksto Fernando Pereirafor pointing out this reference. It is amazing how much overlap, apparently without mutual knowledge,
there is between the text compression field and probabilistic computational linguistics. For example, the problem of smoothing zero-
probability estimates and the solutions using mixtures (Bahl et al. 1983) or back-off models (Katz 1987) all have almost perfect analogs
in the various strategies for building code spacesfor compression models.

9Bell et al. (1990) attribute the state merging ideato Evans (1971).
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complexity and data fit. Second, since the finite-state models they investigate act as encoder/decoders of
text they are deterministic, i.e., the current state and the next input symbol determine a unique next state (it
follows that each string has a unique derivation). This constrains the model space and alows states to be
identified with string suffixes, which isthe basis of al their a gorithms. Finally, the model s have no end states
since they are supposed to encode continuous text. This is actually a minor difference since we can view
the end-of-sentence as a special symbol, so that the fina state is simply one that is dedicated to emitting that
specia symbol.

Bell et al. (1990) suggest state splittingasamore efficient inducti on techni quefor adaptively finding
afinite-state model structure. In thisapproach, states are successively duplicated and differentiated according
to their preceding context, whenever such a move promises to help the prediction of the following symbol.
Ron et al. (1994) give areformulation and formal analysis of thisidea in terms of an information-theoretic
eval uation function.

Interestingly, Bell et al. (1990) show that such a state splitting strategy confines the power of the
finite-state model to that of a finite-context model. In models of this type there is dways a finite bound %,
such that thelast £ preceding symbols uniquely determine the distribution of the next symbol. In other words,
state-based model sderived by thiskind of splitting are essentially n-gram model swith variabl e (but bounded)
context. Thisrestriction applies equally to the algorithm of Ron et al. (1994).

By contrast, consider the HMM depicted in Figure 3.2, which is used bel ow as abenchmark model.
It describes a language in which the context needed for correct prediction of the final symbol is unbounded.
Such amodd can be found without difficulty by simple best-first merging. The major advantage of splitting
approach isthat it is guaranteed to find the appropriate model if enough data is presented and if the target
languageisin fact finite-context.

3.54 Other probabilistic approaches

Another probabilistic approach to HMM structure induction similar to oursis described by Thoma
son & Granum (1986). The basic idea is to incrementally build a model structure by incorporating new
samples using an extended form of Viterbi alignment. New samples are aligned to the existing moddl so as
to maximize their likelihood, while allowing states to be inserted or deleted for alignment purposes. The
procedureislimited to HMMsthat have a left-to-right ordering of states, however; in particular, no loops are
allowed. In asense thisapproach can be seen as an approximation to Bayesian HMM merging for thisspecia
class of models. The approximation in this case is twofold: the likelihood (not the posterior) is maximized,
and only the likelihood of a single sample (rather than the entire data set) is considered.

Hausdler et al. (1992) apply HMMs trained by the Baum-Welch method to the problem of protein
primary structure alignment. Their model structures are mostly of afixed, linear form, but subject to limited
modification by a heuristic that inserts states (' stretches' the model) or deletes states (‘shrinks' the model)
based on the estimated probabilities.

Somewhat surprisingly, thework by Brown et al. (1992) on the construction of class-based n-gram
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model s for language modeling can also be viewed as a special case of HMM merging. A class-based n-gram
grammar is easily represented as an HMM, with one state per class. Transition probabilities represent the
conditional probabilitiesbetween classes, whereas emission probabilitiescorrespond to theword distributions
for each class (for n > 2, higher-order HMMs are required). The incremental word clustering agorithm
givenin (Brown et al. 1992) then becomes an instance of HMM merging, albeit onethat isentirely based on
likelihoods.1°

3.6 Evaluation

We have evaluated the HMM merging algorithm experimentally in a series of applications. Such

an evaluation is essential for a number of reasons:

e Thesimple priorsused in our algorithm giveit a genera direction, but little specific guidance, or may
actually bemidleading in practical cases, given finite data

e Even if we grant the appropriateness of the priors (and hence the optimality of the Bayesian infer-
ence procedure in itsideal form), the various approximations and simplifications incorporated in our
implementation could jeopardize the result.

e Using rea problems (and associated data), it hasto be shown that HMM merging isa practica method,
both in terms of results and regarding computational requirements.

We proceed in three stages. First, smple formal languages and artificially generated training
samples are used to provide a proof-of-concept for the approach. Second, we turn to real, abeit abstracted
data derived from the TIMIT speech database. Finally, we give a brief account of how HMM merging is
embedded in an operational speech understanding system to provide multiple-pronunciation modelsfor word
recognition.!

3.6.1 Casestudiesof finite-statelanguageinduction
3.6.1.1 Methodology

In thefirst group of tests we performed with the merging algorithm, the objective was twofold: we
wanted to assess empirically the basi c soundness of the merging heuristic and the best-first search strategy, as
well as to compare its structure finding abilities to the traditional Baum-Wel ch method.

To thisend, we chose anumber of relatively simpleregular |anguages, produced stochastic versions
of them, generated artificial corpora, and submitted the samples to both induction methods. The probability

10Furthermore, after becoming aware of their work, werealized that the scheme Brown et al. (1992) areusing for efficient recomputation
of likelihoodsafter merging is essentially the same asthe one we were using for recomputing posteriors (subtracting old terms and adding
new ones).

Al HMM drawingsin this section were produced using an ad hoc algorithm that optimizes layout using best-first search based on a
heuristic quality metric (no Bayesian principles whatsoever were involved). We apologize for not taking the time to hand-edit some of
the more problematic results, but believe the quality to be sufficient for expository purposes.
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distribution for a target language was generated by assigning uniform probabilities at al choice pointsin a
given HMM topol ogy.

Theinduced model swere compared using avariety of techniques. A simplequantitativecomparison
is obtained by computing thelog likelihood on atest set. Thisisproportional to the negative of (the empirical
estimate of ) the cross-entropy, which reaches a minimum when the two distributionsare identical .

To evaluate the HMM topol ogy induced by Baum-Wel ch training, the resulting model s are pruned,
i.e, transitions and emissions with probability close to zero are deleted. The resulting structure can then be
compared with that of the target model, or one generated by merging. The pruning criterion used throughout
was that atransition or emission had an expected count of less than 102 given the training set.

Specifically, we would like to check that the resulting model generates exactly the same discrete
language as the target model. This can be done empirically (with arbitrarily high accuracy) using a smple
Monte-Carlo experiment. First, the target model is used to generate a reasonably large number of samples,
which are then parsed using the HMM under evaluation. Samples which cannot be parsed indicate that the
induction process has produced a model that is not sufficiently general. This can be interpreted as overfitting
the training data.

Conversely, we can generate samplesfrom the HMM in question and check that these can be parsed
by the target model. If not, the induction has overgeneralized.

In some cases we also inspected the resulting HMM structures, mostly to gain an intuition for the
possible ways in which things can go wrong. Some examples of thisare presented bel ow.

Note that the outcome of the Baum-Welch a gorithm may (and indeed does, in our experience) vary
greatly with the initial parameter settings. We therefore set the initial transition and emission probabilities
randomly from a uniform distribution, and repeated each Baum-Wel ch experiment 10 times. Merging, on the
other hand, is deterministic, so for each group of runs only a single merging experiment was performed for
comparison purposes.

Another source of variation in the Baum-Welch method isthe fixed total number of model parame-
ters. Inour case, theHMMsare fully parameterized for agiven number of states and set of possibleemissions;
S0 the number of parameters can be simply characterized by the number of statesin the HMM. 12

In the experiments reported here wetried two variants: oneinwhich the number of states was equal
to that of the target model (the minimal number of states for the language at hand), and a second onein which
additional states were provided.

Finally, the nature of the training samples was a so varied. Besides a standard random sample from
the target distribution we also experimented with a ‘minimal’ selection of representative samples, chosen
to be characteristic of the HMM topology in question. This selection is heuristic and can be characterized
as follows: “From the list of all strings generated by the target model, pick a minimal subset, in order of
decreasing probability, such that each transition and emission inthetarget model isexercised at |east once, and

such that each looping transitionis exemplified by asamplethat traversestheloop at least twice.” The minimal

2By convention, we excludeinitial and final states in these counts.
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training samples this rule produces are listed below, and do in fact seem to be intuitively representative of
thelr respective target models.

3.6.1.2 Priorsand merging strategy

A uniform strategy and associated parameter settings were used in al merging experiments.

The straightforward description length prior for HMM topol ogiesfrom Section 3.3.3.3, along with
a narrow Dirichlet prior for the parameters (Section 3.3.3.2) were used to drive generaization. The total
Dirichlet prior weight «q for each multinomial was held constant at o9 = 1, which biases the probabilities
to be non-uniform (in spite of the target models used). The objective function in the maximization was the
posterior of the HMM structure, as discussed in Section 2.5.7.

Merging proceeded using the incremental strategy described in Section 3.3.5 (with batch size 1),
along with several of the techniques discussed earlier. Specifically, incremental merging was constrained to
be among states with identical emissions at first, followed by an unconstrained batch merging phase. The
global prior weight A was adjusted so as to keep the effective sample size constant at 50. In accordance with
therationale given in Section 3.4.4, thisgradually increases the prior weight during the incremental merging
phase, thereby preventing early overgeneralization.

The search strategy was best-first with 5 steps |ookahead.

3.6.1.3 Casestudy |

The first test task was to learn the regular language ac*a U be*b, generated by the HMM in
Figure 3.2.13 It turns out that the key difficulty in this case is to find the dependency between first and
last symbols, which can be separated by arbitrarily long sequences of intervening (and non-distinguishing)
symbols.*#
The minimal training sample used for thismodel consisted of 8 strings:
aa
bb
aca
beb
acca
beeb

accca

beeeb

Alternatively, a sample of 20 random strings was used.
The results of both the merging and the Baum-Welch runs are summarized by the series of plotsin
Figure 3.3. The plotsin theleft column refer to the minimal training sample runs, whereas the right column

13\We use standard regul ar expression notation to describefinite-state languages: =* standsfor k repetitions of thestring z, =* denotes
0 or morerepetitions of , =+ standsfor 1 or more repetitions, and U is the digjunction (set union) operator.

14This test model was inspired by finite-state models with similar characteristics that have been the subject of investigations into
human languagelearning capabilities (Reber 1969; Cleeremans 1991)
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Figure 3.2: Case study I: HMM generating the test language ac*a U bc*b.
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Figure 3.3: Case study I: Results of induction runs.



CHAPTER 3. HIDDEN MARKOV MODELS 54

shows the corresponding data for the random 20 string sample runs. Each plot shows a quantitative measure
of the induced models performance, such that the z-axis represents the various experiments. In each case,
the left-most data point (to the left of the vertical bar) represents the single merging (M) run, followed by 10
data points for repeated Baum-Welch runs with minima number of states (BW6), and 10 more data points
for Baum-Welch runswith 10 states (BW10).

The top row plots the log likelihood on a 100 sample test set; the higher the value, the lower the
relative entropy (Kullback-L eibler distance) between the distribution of strings generated by the target model
and that embodied by theinduced model. To obtain comparable numbers, the probabilitiesin both the merged
model and those estimated by Baum-Welch are set to their ML estimates (ignoring the parameter prior used
during merging).

The second row of plots shows the results of parsing the same 100 samples using the discretized
induced model topologies, i.e., the number of samples successfully parsed. A score of less than 100 means
that the induced model istoo specific.

The third row of plots shows the converse parsing experiment: how many out of 100 random
samples generated by each induced model can be parsed by the target modedl. (Note that these 100 samples
therefore are not the same acrossruns.) Therefore, a score of less than 100 indicates that the induced model
isoverly generd.

Note that we usetheterms‘ genera’ and ‘ specific’ in aloose sense here which includes cases where
two models are not comparable in the set-theoretic sense. In particular, amodel can be both *more genera’
and ‘more specific’ than the target model.

When evaluating the structural propertiesof amodel we consider asa‘ success' those which neither
overgeneralize nor overfit. Such models invariably also have a log likelihood close to optimal. The log
likelihood aone, however, can be deceptive, i.e, it may appear close to optima even though the model
structure represents poor generalization. Thisis because the critical, longer samples that would be indicative
of generdization have small probability and contribute little to the average log likelihood. This was the
primary reason for devising the parsing experiments as an additiona evaluation criterion.

Results The merging procedure was able to find the target model structure for both types of training sets.
The left-most data pointsin the plots can therefore be taken as benchmarks in evaluating the performance of
the Baum-Welch method on this data

The quality of the Baum-Welch induced model structures seems to vary wildly with the choice of
initial conditions. For theminimal sample, 2 out of 10 runsresulted in perfect model structureswhen working
with 6 states; 3 out of 10 when using 10 states (four more than necessary). When given a random training
sampl e instead, the success rate improved to 3/10 and 7/10, respectively.

The overgeneralizations observed in Baum-Welch derived models correspond mostly to a missing
correlation between initial and final symbols. These modelstypically generate some subset of (aUb)c*(aUb)
which leads to about 50% of the samples generated to be rejected by the target model (cf. bottom plots).
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®) 0.25

Figure 3.4: Case study I: BW-derived HMM structuresthat fail on generalization.
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Figure 3.5: Case study I: Redundant BW-derived HMM structurefor ac*a U bc*b.

Baum-Welch studies It isinstructive to inspect some of the HMM topol ogies found by the Baum-Welch
estimator. Figure 3.4 showsmodelsof 6 statestrained on minimal samples, one exhibiting overgeneralization,
and one demonstrating both overfitting and overgeneralization.

The HMM in (8) generates (a U b)c*(a U b) and has redundantly allocated states to generate a U b.
The HMM in (b) generates (a U b)cF(a U b), for k = 0,1,2,3. Here, precious states have been wasted
modeling the repetition of ¢'s, instead of generalizing to a loop over a single state and using those states to
model the distinction between ¢ and b.

If estimation using the minimal number of states (6 in this case) is successful, the discretized
structureinvariably isthat of the target model (Figure 3.2), as expected, athoughthe probabilitieswill depend
on the training sample used. Successful induction using 10 states, on the other hand, leads to models that,
by definition, contain redundant states. However, the redundancy is not necessarily a simple duplication of
states found in the target model structure. Instead, rather convoluted structures are found, such asthe onein

Figure 3.5 (induced from the random 20 samples).

Merging studies We aso investigated how the merging algorithm behaves for non-optimal vaues of the
global prior weight A. As explained earlier, thisvalueis implicit in the number of ‘effective’ samples, the
parameter that was maintained constant in all experiments, and which seems to be robust over roughly an
order of magnitude.

We therefore took the resulting A value and adjusted it both upward and downward by an order of
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Figure 3.6: Case study |: Generalization depending on global prior weight.
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Figure 3.7: Case study I1: HMM generating the test language atbtatbt.

magnitude to produce undergeneralized (overfitted) and overgeneralized models, respectively. The series of
models found (using the minimal sample) is shown in Figure 3.6.

For A = 0.016 no structural generalization takes place; the sample set is simply represented in a
concise manner. For awide range around A = 0.16, the target HMM is derived, up to different probability
parameters. A further increaseto A = 1.0 produces amodel whose structure no longer distingui shes between

a and b. One could argue that this overgeneralization isa‘natural’ one given the data.

3.6.14 Casestudy Il

The second test language is atbTatht, generated by the HMM depicted in Figure 3.7. The
minimal training sample contains the following nine strings

abab

aabab

abbab

abaab

ababb

aaabab

abbbab

abaaab

ababbb

The other training sample once again consisted of 20 randomly drawn strings.

Figure 3.8 presents the resultsin graphical form, using the same measures and arrangement as in
the previous case study. (However, note that the ranges on some of the y-axes differ.)

Similar to the previous experiment, the merging procedure was successful in finding the target
model, whereas the Baum-Wel ch estimator produced inconsistent results that were highly dependent on the
initial parameter settings. Furthermore, the Baum-Welch success rates seemed to reverse when switching
fromtheminimal to therandom sample (from 6/10 and 0/10 to 1/10 and 6/10, respectively). Thisisdisturbing
sinceit reveals a sengitivity not only to the number of statesin the model, but aso to the precise statistics of
the sample data.

The overgenerdizations are typically of theform (atb6+)*, whereeither k = 1 or & > 2.
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Figure 3.8: Case study Il: Results of induction runs.
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Figure 3.9: Case study I1: BW-derived HMM structures that fail on generalization.

Baum-Welch studies As in the previous case study, we looked at various model structures found by
Baum-Wel ch estimation. All examples in this section are from training on the 20 random samples.

Figure3.9(a) shows astructurethat isoverly general: it generates (a Uatb%)(aUb)*b*. In(b), we
have an HMM that partly overgeneralizes, but at the same time exhibitsarather peculiar case of overfitting: it
excludes stringsof theform atb*a* b+ where k iseven. No such cases happened to be present in thetraining
et

The accurate model structures of 10 states found by the Baum-Welch method again tended to be
rather convoluted. Figure 3.10 shows as case in point.

Merging studies We also repeated the experiment examining the levels of generdization by the merging
algorithm, as the value of the global prior weight was increased over three orders of magnitude.

Figure 3.11 showsthe progression of modelsfor A = 0.018,0.18,and 1.0. The patternissimilar to
that ininthefirst case study (Figure 3.11). Theresulting model srange from asimple merged representation of
the samples to a plausible overgenerdization from thetraining data ((a* 6%)*). The target model is obtained

for A values between these two extremes.
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Figure 3.10: Case study I1: Redundant BW-derived HMM structurefor atbtatb ™.
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A =0.018
A=0.18
A=10

Figure 3.11: Case study I1: Generalization depending on global prior weight.
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3.6.1.5 Discussion

It istempting to try to find a pattern in the performance of the Baum-Welch estimator in terms of
parameters such as model size and sample size and type (athough thiswoul d go beyond theintended scope of
this study). Regarding model size, one would expect the smaller minima modelsto produce better coverage
of the target language, and a tendency to overgeneralize, sincetoo few states are available to produce a close
fit tothedata. Thisisindeed observablein the plotsin the bottom rows of Figures 3.3 and 3.8: therunsinthe
left half typically produce a higher number of rejected (overgeneralized) samples.

Conversely, one expects a greater tendency toward overfitting in the training runs using more than
the minimal number of states. The plotsin the middle rows of Figures 3.3 and 3.8 confirm this expectation:
the right halfs show a greater number of rejected strings from the target language, indicating insufficient
generalization.

It is conceivable that for each language there exists a model size that would lead to a good
compromise between generalization and data fit so as to produce reliable structure estimation. The problem
isthat there seems to be no good way to predict that optimal size.®

Successful use of the model merging approach a so relies on suitable parameter choices, mainly of
the global prior weight (or the number of ‘ effective samples’). The prime advantage of merging in thisregard
isthat the parameters seem to be more robust to both sample size and distribution, and the mechanics of the
algorithm make it straightforward to experiment with them. Furthermore, it appears that overgeneralization
by excessive merging tends to produce ‘plausible’ models (with the obvious caveat that this conclusion is
both tentative given the limited scope of the investigation, and a matter of human judgment).

3.6.2 Phonetic word modelsfrom labeled speech
36.21 TheTIMIT database

In the second eva uation stage, we were looking for a sizeable collection of real-world data suitable
for HMM modeling. The TIMIT (Texas Instruments-MIT) database is a collection of hand-labeled speech
samples compiled for the purpose of training speaker-independent phonetic recognition systems (Garofolo
1988). It contains acoustic data segmented by words and aligned with discrete labels from an aphabet of
62 phones. For our purposes, we ignored the continuous, acoustic data and viewed the database smply as a
collection of string samples over a discrete a phabet.

The goal is to construct a probabilistic model for each word in the database, representing its
phonetic structure as accurately as possible, i.e.,, maximizing the probabilitiesof the observed pronunciations.
A fraction of thetota availabledata, thetest set, isset asidefor evaluating theinduced models, whiletherestis
used to induce or otherwise estimate the probabilistic mode for each word. By comparing the performance of
the model s generated by various methods, along with other rel evant properties such as model size, processing
time, etc., we can arrive at areasonably objective comparison of the various methods. Of course, the ultimate

15|n Section 3.6.2 we actually use a simple heuristic that scales the model sizeslinearly with the length of the samples. This heuristic
works rather well in that particular application, but it crucially relies on the modelsbeing loop-free, and hencewouldn’t apply generally.
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test isto use pronunciationmodel sin an actual systemthat handlesacoustic data, aconsiderably moreinvolved
task. In Section 3.6.3 we will describe such asystem and how the HMM merging process was brought to bear
onit.

The full TIMIT dataset consists of 53355 phonetic samples for 6100 words.'® To keep the task
somewhat manageable, and to eliminate a large number of wordswith too few samples to alow meaningful
structural model induction, we used a subset of this data consisting of words of intermediate frequency.
Arbitrarily, we included words occurring between 20 and 100 timesin the dataset. Thisleft uswith aworking
dataset of 206 words, comprising a total of 7861 samples. Of these, 75% for each word (5966 total) were
made availabl e to various training methods, while the remaining 25% (1895 total) were | eft for eval uation.

3.6.2.2 Qualitativeevaluation

In preliminary work, while eval uating the possibility of incorporatingHMM merging in an ongoing
speech understanding project, Gary Tajchman, a researcher at ICSl with extensive experience in acoustic-
phonetic modeling, experimented with the algorithm using the TIMIT database. He inspected alarge number
of the resulting models for ‘ phonetic plausibility’, and found that they generally appeared sound, in that the
generated structures were close to conventional linguistic wisdom.

To get an idea for the kinds of models that HMM merging produces from this data it is useful
to examine an example. Figure 3.13 shows an HMM constructed from 37 samples of the word often. For
comparison, Figure 3.12 shows the initial HMM constructed from the samples, before merging (but with
identical paths collapsed).

Figure 3.14 plotsthe number of states obtained during on-line (incremental) merging as a function
of the number of incorporated samples. The numbers of states before and after merging at each stage are
plotted as adjacent datapoint, giving rise to the spikesin the figure. Merging starts with five incorporated
samples (17 states). Initially merging occurs with almost every additional sample, but later on most samples
are dready parsed by the HMM and require no further merging.

The most striking feature of theinduced HMM isthat both the first and the second syllable of often
contain a number of alternative pronunciationsanchored around the centra [f] consonant, which is common
toal variants. Thisstructural property iswell mirrored in the two branching sectionsof the HMM. A number
of the pronunciation for the second syllable share the optional [tcl t] sequence.

Notice that each state (except initial and final) has exactly one output symbol. This constraint was
imposed due to the particular task we had in mind for the resulting HMMs. The speech recognition system
for which these word model s areintended implicitly assumes that each HMM state represents a unique phone.
Such arestriction can be easily enforced in the algorithm by filtering the merge candidates for pairs of states
with identical emissions.

The single-output constraint does not limit the representational power of the HMMSs, since a multi-
output state can always be split into severa single-output states. It does, however, affect the structural prior

16Thisis the union of the ‘training’ and ‘test’ portionsin the original TIMIT distribution.
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Figure 3.12: Initial HMM constructed from 37 samples of the word often.

Probabilities are omitted in this graph. Due to repetitions in the data the HMM has only 23
digtinct paths.
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Figure 3.13: Merged HMM constructed from 37 samples of the word often.

Merging was constrained to keep the emission on each state unique.
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Figure 3.14: Number of HMM states as a function of the number of samples incorporated during incremental
merging.

Each spike represents the states added to model an unparseable sample, which are then (partly)
merged into the existing HMM structure.

for theHMM. In asingle-output HMM, each emission carries aprior probability of ﬁ rather than one of the

various structural priors over multinomia s discussed in Section 3.3.3.3. Incidentally, the constraint can also
speed up the algorithm significantly, because many candidates are efficiently eliminated that would otherwise
have to be evaluated and regjected. This advantage by far outweighsthe larger size of the derived models.

A second constraint can be enforced in this particular domain (and possibly others). Since the
resulting HMM s are meant to be phonetic word model s, it does not make sense to allow loopsin these models.
In very rare circumstances the merging algorithm might be tempted to introduce such loops, eg., because
of some peculiar repetitive pattern in a sample (‘banana’). Given our prior knowledge in this regard we can
simply rule out candidate merges that would introduce |oops.*’

HMM merging can thus be used to derive models for alophonic variation from data, without
explicitly representing a mapping from individua phonemes to their realizations. This is in contrast to
other approaches where one first induces rules for pronunciations of individual phonemes based on their
contexts (e.g., using decision treeinduction), which can then be concatenated into networksrepresenting word
pronunciations (Chen 1990; Riley 1991). A detailed comparison of the two approachesis desirable, but so far
hasn’'t been carried out. We simply remark that both approaches could be combined by generating alophone

17t is customary in HMM modeling for speech recognition to introduce self-loops on states to model varying durations. This does not
contradict what was said above; these self-loops are introduced at alower representational level, along with other devices such as state
replication. They are systematically added to the merged HMM before using the HMM for alignment with continuous speech data.
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sequences from induced phoneme-based model s and adding them to directly observed pronunciationsfor the

purpose of smoothing.

3.6.2.3 Quantitativeevaluation

Severa HMM construction methods were tested and compared using the TIMIT data.

e The maximum-likelihood (ML) modd: the HMM isthe union of al unique samples, with probabilities
corresponding to the observed relative frequencies. Thisis essentially the result of building theinitial
mode! inthe HMM merging procedure, before any merging takes place.

e Baum-Welch estimation: an HMM of fixed size and structure is submitted to Baum-Welch (EM)
estimation of the probability parameters. Of course, finding the ‘right’ size and structureis exactly the
learning problem at hand. We wanted to evaluate the structure finding abilities of the Baum-Welch
procedure, so we set the number of states to afixed multiple of the maximum sample length for agiven
word, and randomly initialized al| possibletransitionsand emissionsto non-zero probabilities. After the
EM procedure converges, transitions and emissions with probability close to zero are pruned, leaving
an HMM structure that can be evaluated. Several model sizes (as multiplesof the sample length) were
tried.

e Standard HMM merging withloop suppression (see above). We used thesimple descriptionlengthprior
from Section 3.3.3.3, withlog P = —n; log|Q| for transitionsand log P = —n. log|X| for emissions,
as well as a narrow Dirichlet prior for transition and emission probabilities, with «g = 1.0 in both
cases. Severd global weighting factors A for the structure prior were evaluated.

¢ HMM merging withthesingle-output constraint, as explained above. Thesame prior asfor themultiple-
output HMMs was used, except that an emission parameter prior does not exist in this case, and the
structurd prior contribution for an emissionislog P = —log|X|.

A simple-minded way of comparing these various methods would be to apply them to the training
portion of the data, and then compare generalization on the test data. As a measure of generdization it is
customary to use the negative log probability, or empirical cross-entropy, they assign to thetest samples. The
method that achieves the lowest cross-entropy would ‘win’ the comparison.

A problem that immediately poses itself is that there is a significant chance that some of the test
samples have zero probability according to the induced HMMs. One might be tempted to evaluate based on
the number of test samples covered by the model, but such a comparison alone would be meaningless since a
model that assigns (very low) probability to all possible strings could trivially ‘win’ in this comparison.

The general approach that is usually taken in this situation is to have some recipe that prevents
vanishing probabilities on new, unseen samples. There are a great many such approaches in common use,
such as parameter smoothing and back-off schemes, but many of these are not suitable for the comparison
task at hand.
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At the very least, the method chosen should be

o well-defined, i.e., correspond to some probabilistic model that represents a proper distribution over all
strings,

¢ unbiased with respect to the methods being compared, to the extent possible.

Standard back-off models (where a second model is consulted if, and only if, thefirst one returns
probability zero) do not yield consistent probabilities unless they are combined with *discounting’ of proba-
bilitiesto ensure that thetotal probability mass sumsup to unity (Katz 1987). The discounting scheme, aswell
as various smoothing approaches (e.g., adding a fixed number of virtua ‘Dirichlet’ samples into parameter
estimates) tend to be specific to the model used, and are therefore inherently problematic when comparing
different model -building methods.

To overcome these problems, we chose to use the mixture models approach described in Sec-
tion 2.3.1. The target models to be evaluated are combined with a simple back-off model that guarantees
non-zero probabilities, eg., abigram grammar with smoothed parameters. Thisback-off grammar isidentical
in structure for al target models. Unlike discrete back-off schemes, the target and the back-up are aways
consulted both for the probability they assign to a given sample, which are then weighted and averaged
according to a mixture proportion.

When comparing two model induction methods, we first let each induce a structure. Each is built
into a mixture model, and both the component model parameters and the mixture proportions are estimated
using the EM procedure for generic mixture distributions. To get meaningful estimates for the mixture
proportions, the HMM structure is induced based on a subset of the training data, and the full training data
is then used to estimate the parameters, including the mixture weights. This holding-out of training data
makes the mixture model approach similar to the deleted interpol ation method (Jelinek & Mercer 1980). The
main differenceisthat the component parameters are estimated jointly with the mixture proportions.® In our
experiments we always used haf of the training data in the structure induction phase, adding the other half
duringthe EM estimation phase. Also, to ensure that the back-off model receives anon-zero prior probability,

we estimate the mixture proportionsunder a simple symmetrical Dirichlet prior with a1 = a = 1.5.

3.6.24 Resultsand discussion

HMM merging was evaluated in two variants, with and without the single-output constraint. In
each version, three settings of the structure prior weight A were tried: 0.25, 0.5 and 1.0. Similarly, for
Baum-Welch training the preset number of states in the fully parameterized HMM was set to 1.0, 1.5 and
1.75 times the longest sample length. For comparison purposes, we aso included the performance of the
unmerged maximum-likelihood HMM, and a biphone grammar of the kind used in the mixture models used

to evaluate the other model types. Table 3.1 summarizes the results of these experiments.

18This difference can be traced to the different goals: in deleted interpolation the main goal is to gauge the reliability of parameter
estimates, whereas here we want to assess the different structures.
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ML M(A=025 MX=05 MMHN=10
log P —2.600-10° —-2418-10° -2.355-10° -2.343.10°
Perplexity 1.979 1.886 1.855 1.849
Significance | p < 0.000001 p < 0.0036 p < 0.45 -
states 4084 1333 1232 1204
transitions 4857 1725 1579 1542
emissions 3878 1425 1385 1384
training time 28:19 32:03 28:58 29:49

ML M1(A=025 M1(A=05 M1(A=10)
log P —2.600-10° -2450-10° —-2403-10° -2.394.-10°
Perplexity 1.979 1.902 1.879 1.874
Significance | p < 0.000001  p < 0.0004 p < 0.013 p < 0.016
states 4084 1653 1601 1592
transitions 4857 2368 2329 2333
emissions 3878 1447 1395 1386
training time 28:19 30:14 26:03 25:53

BG BW(N =10L) BW (N =15L) BW (N =175L)
log P —2.613-10° —2.470-103 —2.385-10° —2.392-103
Perplexity 1.985 1.912 1.870 1.873
Significance | p < 0.000001 p < 0.000003 p < 0.041 p < 0.017
states n/a 1120 1578 1798
transitions n/a 1532 2585 3272
emissions n/a 1488 1960 2209
training time 347 55:36 99:55 123:59

Table 3.1: Resultsof TIMIT trialswith several model building methods.
The training methods are identified by the following keys: BG bigram grammar, ML maximum
likelihood HMM, BW Baum-Welch trained HMM, M merged HMM, M1 single-output merged
HMM. log P isthetotal log probability onthe 1895 test samples. Perplexity istheaverage number
of phonesthat can follow in any given context withinaword (computed as the exponential of the
per-phone cross-entropy). Significancereferstothep level in at-test pairing thelog probabilities
of the test samples with those of the best score (merging, A = 1.0).

The number of states, transitionsand emissionsislistedfor theresultingHMMswhere applicable.
The training times listed represent the tota time (in minutes and seconds) it took to induce the
HMM structure and subsequently EM-train the mixture models, on a SPARCstation 10/41.



CHAPTER 3. HIDDEN MARKOV MODELS 71

Thetablea soincludesuseful summary statisticsof the model sizes obtained, and thetimeit took to
compute the models. The latter figures are obvioudly only a very rough measure of computational demands,
and their comparison suffers from the fact that the implementation of each of the methods may certainly be
optimizedinidiosyncraticways. Neverthel ess thesefigures should give an approximateidea of what to expect
in arealistic application of the induction methods involved.

Oneimportant general conclusion from these experimentsisthat both the merged model s and those
obtai ned by Baum-Wel ch training do significantly better than the two * dumb’ approaches, the bigram grammar
and theML HMM (whichisessentialy alist of observed samples). We can therefore concludethat it paysto
try to generalize from the data, either using our Bayesian approach or Baum-Welch on an HMM of suitable
size.

Overall the difference in scores even between the simplest approach (bigram) and the best scoring
one (merging, A = 1.0) are quite small, with phone perplexities ranging from 1.985 to 1.849. This is not
surprising given the speciaized nature and small size of the sample corpus. Unfortunately, this also leaves
very little room for significant differences in comparing aternate methods. However, the advantage of the
best model merging result (unconstrained outputs with A = 1.0) is still significant compared to the best
Baum-Wel ch (size factor 1.5) result (p < 0.041). Such smadll differencesin log probabilitieswould probably
be irrelevant when the resulting HMMs are embedded in a speech recognition system.

Perhaps the biggest advantage of the merging approach in thisapplication isthe compactness of the
resulting models. The merged models are considerably smaller than the comparable Baum-Welch HMMs.
Thisisimportant for any of the standard a gorithms operating on HMMs, which typically scale linearly with
the number of transitions (or quadratically with the number of states). Besides this advantage in production
use, thetrainingtimesfor Baum-Welch grow quadratically with the number of statesfor thestructureinduction
phasesinceit requiresfully parameterized HMMs. Thisscalingisclearly visibleintheruntimeswe observed.

Although we haven’t done a word-by-word comparison of the HMM structures derived by merging
and Baum-Wel ch, the summary of model sizes seem to confirm our earlier finding (Section 3.6.1) that Baum-
Wel ch training needs a certain redundancy in ‘ model real estate’ to be effectivein finding good-fitting models.
Smaller size factors give poor fits, whereas sufficiently large HMMs will tend to overfit the training data.

The choice of the prior weights A for HMM merging (Section 3.4.4) controls the model size in
an indirect way: larger values lead to more generalization and smaller HMMs. For best results this vaue
can be set based on previous experience with representative data. This could effectively be donein a cross-
validation like procedure, in which generalization is successively increased starting with small A’s. Due to
the nature of the merging algorithm, this can be doneincrementally, i.e., the outcome of merging with a small
A can be submitted to more merging at a larger A value, until further increases reduce generalization on the
cross-validation data.
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3.6.3 Multiple pronunciation word models for speech recognition

As part of his dissertation research, Wooters (1993) has used HMM merging extensively in the
context of the Berkeley Restaurant Project (BeRP). BeRP is medium vocabulary, speaker-independent spon-
taneous continuous speech understanding system that functions as a consultant for finding restaurants in the
city of Berkeley, California (Jurafsky et al. 1994a).

In this application, the merging agorithm is run on strings of phone labels obtained by Viterbi-
aligning previoudly existing word model sto sampl e speech (usingthe TIMI T label sasthe phoneal phabet). As
aresult, new word models are obtained, which are then again used for Viterbi alignment, leading to improved
labelings, etc. This procedureisiterated until no further improvement in the recognition performance (or the
labelings themselves) is observed. The word models are bootstrapped with a list of pronunciations from a
variety of databases. The goal of the iteration with repested aignments and mergings is to tailor the word
model s to the task-specific data at hand, and to generalize from it where possible.

An added complication is that HMMs with discrete outputs are not by themselves applicable to
acoustic speech data. Using an approach developed by Bourlard & Morgan (1993), the HMMss are combined
with acoustic feature densities represented by a multi-layer perceptron (MLP). This neura network maps
each frame of acoustic features into the phone alphabet. From the network outputs, the likelihoods of the
HMM statesrel ative to the acoustic emissions can be computed, as required for the Viterbi alignment or other
standard HMM algorithms.

Since these emission probabilities are also subject to change due to changes of the word models,
they too have to bereestimated on each iteration. The MLP isbootstrapped with weights obtained by training
on the pre-labeled TIMIT acoustic data. Figure 3.15 depicts the combined iteration of MLP training, word
model merging, and Viterbi alignment. It can be viewed as an instance of a generalized EM algorithm, in
which emission probabilities (represented by the MLP) and HMM structure and transition probabilities are
optimized separately. The separation isaresult of the different technol ogies used.

For the BeRP system, HMM merging made it possible and practica to use multiple pronunciation
word model's, whereas before it was confined to single pronunciation models. (Note that in this setting, even
avery restricted HMM can produce any acoustic emission with non-zero probability, due to the continuous
nature of the domain, and because the emission distribution represented by the MLP is inherently non-
vanishing.)

To assess its effectiveness, the recognition performance of the multiple-pronunciation system was
compared against that of an otherwiseidentical system in which only one phone sequence per word was used
(generated by acommercial text-to-speech system). In this comparison, multiple-pronunciation modeling as
derived by HMM merging was found to reduce the word-level error rate from 40.6% to 32.1%. At the same
time, the error rate at the level of semantic interpretationsdropped from 43.4% to 34.1%.

Further experimentsareneeded toidentify moreprecisely what aspectsof themultiple-pronunciation
approach account for the improvement, i.e, whether other word model building techniques would lead to
significantly different resultsin this context. However, the preliminary results do show that HMM mergingis
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both practical and effective when embedded in aredlistic speech system.

The details of the construction of these word models, along with discussion of ancillary issues and
agraphical HMM representation of the pronunciation for the 50 most common wordsin the BeRP corpuscan
be found in Wooters (1993).

3.7 Conclusions and Further Research

Our evauations indicate that the HMM merging approach is a promising new way to induce
probabilistic finite-state models from data. It compares favorably with the standard Baum-Welch method,
especialy when there are few prior constraints on the HMM topology. Our implementation of the algorithm
and applicationsin the speech domain have shown it to be feasible in practice.

Experimentation with the range of plausible priors, as well as new, application-specific ones is
time-consuming, and we have barely scratched the surface in this area. However, the experience so far with
the priorsdiscussed in Section 3.3.3 isthat the particul ar choice of prior type and parameters does not greatly
affect the course of the best-first search, except possibly the decision when to stop. 1n other words, themerging
heuristic, together with the effect of the likelihood are the determining factors in the choice of merges. This
could, and in fact should, change with the use of more informative priors.

Likewise, we haven't pursued merging of HMMs with non-discrete outputs. For example, HMMs
with mixtures of Gaussians as emission densitiesare being used extensively (Gauvain & Lee 1991) for speech
modeling. Our merging algorithm becomes applicable to such models provided that one has a prior for such
densities, which should be straightforward (Cheeseman et al. 1988). Efficient implementation of the merging
operator may be a bigger problem—one wants to avoid having to explicitly compute a merged density for
each merge under consideration.

One of the major shortcomings of the current merging strategy is its inability to ‘back off’ from
a merging step that turns out be an overgeneraization in the light of new data. A solution to this problem
might be the addition of acomplementary state splitting operator, along the lines of Bell et al. (1990) or Ron
et al. (1994). The evaluation functions used in those approaches are entropy-based, and thus equivalent to
maximum likelihood, which also means that a Bayesian generalization (by adding asuitable prior) should not
be hard.

Asmentioned in Section 3.5.3, standard splitting alone will not explore thefull power of finite-state
models, and combining merging with splitting would circumvent this limitation. The major difficulty with
evaluating splits (as opposed to merges) isthat it requires rather more el aborate statistics than simple Viterbi

counts, since splitting decisions are based on co-occurrences of statesin a path.
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Chapter 4

Stochastic Context-free Grammars

4.1 Introduction and Overview

In this chapter we will look at model merging as applied to the probabilistic version of context-free
grammars. The stochastic context-free grammar (SCFG) formalism is a generaization of the HMM, just as
non-probabilistic CFGs can be thought of as an extension of finite state grammars.

Unliketheir their non-probabilisticcounterpart, SCFGsarenot a‘ mainstream’ approach tolanguage
modelingyet.! Inmost of today’sprobabilisticlanguage model sfinite-state or even simple n-gram approaches
dominate. One reason for thisis that although most standard algorithms for probabilistic finite-state models
(i.e., HMMs) have generalized versionsfor SCFGs, they become computationally more demanding, and often
intractable in practice (see Section 4.2.2).

A moreimportant problemisthat SCFGs may actually beworse at modeling one aspect of language
in which simple finite-state models do a surprisingly good job: capturing the short-distance, lexical (as
opposed to phrase-structural) contingencies between words. This isadirect consequence of the conditional
independence assumptions embodied in SCFGs, and has prompted the investigation of ‘mildly context-
sensitive’ grammars and their probabilistic versions (Resnik 1992; Schabes 1992). These, however, come at
an even greater computational price.

Recent work has shown that probabilistic CFGs can be useful if applied carefully and in the right
domain. Lari & Young (1991) discuss various applications of estimated SCFGs for phonetic modeling.
Jurafsky et al. (1994b) show that a SCFG built from hand-crafted rules with probabilities estimated from a
corpus can improve speech recognition performance over standard n-gram language models, either by directly
coupling the SCFG to the speech decoder, or by using the SCFG effectively as a smoothing device toimprove
the estimates of n-gram probabilitiesfrom sparse data. The algorithmsthat form the basis of these last two
approaches are described in the second part of thisthesis, in Chapter 6 and Chapter 7, respectively.

IWhile bare CFGs aren’t widely used in computational linguistics either, they form the basis or ‘backbone’ of most of today’s
feature and unification-based grammar formalisms, such asLFG (Kaplan & Bresnan 1982), GPSG (Gazdar et al. 1985), and construction
grammar (Fillmore 1988).
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Finally, SCFGs have been applied successfully to the modeling of biological structures, notably
the secondary structures of various types of RNA (Sakakibara et al. 1994; Underwood 1994).2 It seems
that biologica sequences with their relatively small aphabets and more precisely formalized combinatoria
propertiesare comparatively ideal applicationsfor formal grammars, next to the rather messy natural language
domain.®

In short, we will leave open the question of whether context-free models are appropriate or useful
in general, and focus instead on the learning problem itself, within the Bayesian model merging framework
developed earlier.

Thefollowing Section 4.2 reviewsthe basic SCFG formalism and gives an overview of the standard
algorithms as they relate to the learning problem.

Following that, Section 4.3 describes the model merging agorithm for SCFGs. It isnot surprising
that many of the concepts and techniques introduced in Chapter 3 reappear here in similar form. The major
differenceistheintroduction of an additiona merging operator, called chunking or syntagmatic merging.

Section 4.4 relates the Bayesian SCFG merging method to various other, probabilistic and non-
probabilistic approaches found in the literature.

In Section 4.5 we evauate the algorithm experimentally using various formal and quasi-natural
language target grammars. Section 4.5.4 summarizes and discusses possible extensions and approaches to

problems in the current method.

4.2 Stochastic Context-free Grammars

4.2.1 Déefinitions
Definition 4.1 A stochastic context-free grammar (SCFG) M consists of
a) aset of nonterminal symbols A,
b) aset of terminal symbols (or alphabet) X,
¢) adtart nonterminal S €
d) aset of productionsor rules R,
e) production probabilities P(r) forall r € R.

The productionsare of the form
X=X,

where X € N and A € (N UX)*. X iscaled theleft-hand side (LHS) of the production, whereas X isthe
right-hand side (RHS).

2Work in progress addresses the structure of proteins (Kevin Thompson, personal communication).
3This constitutes a subjective judgment from a computational linguist’s point-of-view. Many molecular biologists would probably
disagree and claim that language is the comparatively simpler domain.
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Notation Latincapita letters X, Y, Z denote nonterminal symbols. Latin lowercaselettersa, b, . . . are used
for terminal symbols. Strings of mixed nonterminal and terminal symbols are written using lowercase Greek
letters A, p1, v. The empty stringis denoted by .

A SCFG isthusexactly like a standard context-free grammar, except that productionsare assigned
continuous probability parameters. The interpretation of P(X — \) isthat in a top-down derivation from
the SCFG, the RHS X is chosen with the indicated probability whenever nonterminal X is to be expanded.
P(X — X) isthus a probability conditioned on X. Due to thisinterpretation we get the well-formedness
condition

YP(x—xN=1,

where the sum is over al productionswith LHS X.

Unfortunately, thissimplelocal consistency of the probability parametersin a SCFG isnot sufficient
to necessarily let the SCFG represent a proper distribution over strings. Thiscomplication does not come into
play during learning of SCFGsfrom corpora, but it isimportant when dealing with predetermined SCFGs for
parsing and other purposes. We therefore defer discussion of thistechnicality tolater chapters (Sections 6.4.8
and 7.5).

As for HMMs and other probabilistic grammars, the conditional probability of a string given a
SCFG M isthe sum of the probabilitiesof al derivations of the string. This can beformalized as follows.

Definition 4.2 @) A sentential form of M is a string v of nonterminals and terminals, such that either
v = S, or there is a sentential form x from which v can be produced by replacing one nonterminal

according to aproduction of M, i.e, u = pu1 X2, v = p1dpg, and X — A € R.

b) A (left-most) derivation in M is a sequence of sentential forms beginning with S, each derived by
a single rule application from its predecessor, such that at each step the replaced nonterminal X is
always the left-most nonterminal in the sentential form, i.e,, 1 € ¥* in the notation above. We write

adeivationas S = v, = ...v;, Wherev,, . . ., vy, arethe sentential formsinvolved.
C) The probability of a derivation S = v, = ...y} isinductively defined by
1) PS)=1
2 P(S=...=2r)=PS=>...2r_1)P(X =),
where X — X isthe productionused inthestep vy, _1 = vy.

d) The probability of a string z in M is

P@IM)= > P(S=>..=z) , (4.1)

S=..=>zc

where the summation is over all derivationsthat end in ( (or yield) z.
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Thedefinition of derivation and string probabilitiesisthus compl etel y anal ogousto HMMs, although
the notion of derivationitself is somewhat more complex due to the branching character of a CFG. Left-most
derivations are isomorphic to parse trees in the usua way, and the probability of a derivation is just the
product of all the rule probabilitiesinvolved in the generation. The restriction to left-most derivationsavoids
counting a derivation multiple times when computing thetotal string probability. Asusua, we say astringis
ambiguous if it has more than one derivation (with non-zero probability).

A string may have probability zero either because it cannot be derived due to missing productions,
or because al its derivations have zero probability (because at least one rule has probability zero in each of
them). For computing string probabilities, it makes no difference whether aruleis ‘not there’ or whether
it ispresent but has zero probability. The difference becomes relevant, however, when considering possible

parameterizations of SCFGs and corresponding prior distributions(Section 4.3.4).

422 SCFG estimation

In estimating the rule probabilities of an SCFG, the problem of the unobservable derivations has
to be overcome, just as for HMMs and other probabilistic grammars with hidden derivation processes. The
standard solutionis again based on the EM a gorithm (see Section 2.3.2).

The sufficient statisticsfor estimating the rule probabilities are the counts of how many times each
rule is used in the derivations generating a corpus, denoted by ¢(X — A) for production X — A. The
maximum-likelihood (ML) estimates are obtained by instantiating equation 2.8,

. (X — A)
E e SrTE Y

For the EM procedure to go through, the expected counts ¢(X — X), given the string samples and
aset of current rule probabilities have to be computed (the E-step). Following that, the rules are reestimated
using ¢ instead of ¢ in the above formula (the M-step), and the two steps are iterated to converge to aloca
likelihood maximum.

In the presence of parameter priors the estimates can be modified accordingly. For example,
with aDirichlet prior for each nontermina X', amaximum posterior (MAP) estimate is obtained by applying
equation (2.17) to therulecountsinstead. When using the MAP estimates, the EM procedure finds parameters
that locally maximize the posterior probabilities, instead of just the likelihood.

Asfor HMMs, dynamic programming (in the guise of chart parsing) can be used to compute the
expected counts ¢ with relative efficiency. The dynamic programming scheme for SCFGs is known as the
Inside-Outside algorithm (Baker 1979). It was originally formulated for SCFGs in Chomsky Normal Form
(CNF), but has since been generalized to cope with arbitrary SCFGs. Rule estimation is also part of the
probabilistic Earley parsing framework described in Chapter 6 (Section 6.5.2). The complexity of the Inside-
Outside computation is O(£3| V'), where ¢ isthe length of the input. This makes the estimation algorithm
quite a bit more expensive than the forward-backward a gorithm used for HMMs. Complexity and ways to

reduce it are aso discussed in Chapter 6.
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4.2.3 Viterbi parses

The most likely derivation for a given string is the Viterbi parse. Asin the case of HMMswe will
simplify the probability computationsinvolved in the model merging agorithm by keeping track only of the
dtatistics generated by Viterbi parses.

Viterbi parses are computed by dynamic programming. A chart isfilled bottom-up, computing for
each substring of a sentence and each nonterminal the partia parse with highest probability. Once the chart is
completed, the maximum probability parse can be traced back from the root entry. A version of this method

based on Earley-style chart parsing is described in Chapter 6.

4.3 SCFG Merging

We now describe the ingredientsfor extending the model merging approach to SCFGs. As before,
four issues have to be addressed (cf. Section 3.3):

1. How toincorporate samplesinto theinitia or current model ?
2. What are the merging operators?
3. How to evaluate the quality of a model?

4. How to search the model space, based on the chosen operators and evaluation function?

We start by presenting the sample incorporation and merging operators, without regard to the
eval uation function, then walk through an exampl e to provide some intuitionfor the mechanics of the process.
Priors for SCFGs are discussed next which, combined with the standard likelihood function for SCFGs
(equation 4.1), give us a posterior probability to evauate models. The SCFG merging agorithm is then
completed by specifying the search strategiesin the maximization of the posterior probability over the model

space.

4.3.1 Sampleincorporation and merging operators
43.1.1 |Initialrules

The goal of sample incorporationin model merging isto produce an initial (or incremental) model
that accounts for all samples observed so far, typically by dedicating simple submodel s to each new sample.
For SCFGs this can be accomplished with dedicated top-level productions, each designed to generate one
sample.

Specifically, to incorporate a sample aias . . . a,, We create new nonterminals X, X, ..., X, and

add the following productionsto the current grammar:

S — X1Xo...X,
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X1—>(l1

X2—>a2

Xz —  Qy
The reason for not ssmply adding a single production
S —awar...a

isto keep grammar in aspecia format that simplifiesthe definition of the merging operators. Theinitial rules,
and all those created thereafter by merging, will fall into one of two categories:

e Nonterminal productionswith any (non-zero) number of nonterminals on the RHS.

e Terminal or lexical productions with a single termina on the RHS. The LHS nonterminals in these

productionsare aso called preterminals.

To refer to thistype of CFG, and for lack of a better term, we call this of type of ruleformat Smple Normal
Form (SNF). Any genera CFG without null productions can be converted to SNF by possibly ‘ shadowing’
some terminals with preterminals, while keeping the structure of derivationsintact. SNF is thus a weaker
congtraint than Chomsky Normal Form (CNF), which imposes a binary branching structure on derivations.

4.3.1.2 Keeping count

Along with manipulating the grammar productions, wewill keep track of usage countsfor each rule
in the grammar. These statistics are based on the Viterbi parses for the samples from which the grammar was
built.

In the Bayesian setting, counts are more informative than mere probabilities. As we have seen
in Section 3.4.3 in the case of HMMSs, Viterbi counts can be used to estimate probabilities and/or compute
approximate posterior probabilities for the grammar structure, effectively integrating out rule probabilities
and treating them as ‘ nuisance parameters’

As before, Viterbi counts can be obtained efficiently without parsing (and re-parsing) each sample
by updating rule counts on each merging operation under the assumption that the Viterbi parses are preserved
by the merging operators. As part of this strategy, we aso collapse multiple identical samples during the
incorporation step and assign corresponding counts to the initial productions. These will be notated in
parentheses next to the productions.

Thus, a c-fold occurrence of sample aja; . . .a, would create the following rules and associated

counts:

S —= X1Xo... X, (C)
X]_ — a1 (C)
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Xz — ap (C)

Notation Countsand probabilitieswill be distinguished by parentheses and brackets, respectively. Thus
S—X1Xo...Xe [p]

indicatesthe rule probability p = P(S — X1X>...X,). Thesame distinctionisapplied when listing sets of
sample strings.
abc (4)

denotes a 4-fold occurrence of string abc, whereas
abc [0.12]

means that abc has probability 0.12 relative to some distribution.

4.3.1.3 Nonterminal merging

When rewriting a finite-state grammar as a CFG, the states turn into nonterminalsin left or right-
linear productions. Itisthusnatural to generdize the state merging operation used in HMMsto nonterminals
in SCFGs.

The nonterminal merging operator repl aces two existing nonterminals X ; and X, with asinglenew
nonterminal Y. We will use merge( X1, X2) = Y as ashorthand for the operation. It has atwofold effect on

grammars:

1. RHS occurrences of X1 and X, arereplaced by Y':

Zy — MXypr (e1)
Zr — AXopuz (c2)
ﬂ merge( X1, X2) =Y
Zr — MYpur (c1)
Zy — XYpr (c2)

Notethat thismay lead to the merging of entire productions, namely, if 71 = 7, A1 = A, and pug = po.
In this case the count of the merged productionwould be ¢ + ¢».

2. The union of the productionsfor the LHSs X; and X is associated with the new nonterminal Y':

X]_ — )\1 (Cl)
Xz — )\2 (Cz)
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ﬂ merge(X1, Xz) =Y
Y — )\1 (Cl)
— )\2 (Cz)

Here we assume that A; and A, have previously been subjected to subgtitution as per step 1. LHS
merging can also lead to entire productions becoming merged, if A1 = A». The new count would then
bec; + .

The analogy to HMM state merging carries further. In HMMs, a merging operation may generate
aloop, thereby implementing the ‘inductiveleap’ from amodd that generates only afinite number of strings
to one that alows for infinitely many strings. The same is true here: merging can cregate recursion in the
productions, such aswhen X; and X, occur inthe LHS and RHS, respectively, of the same production:

X1 — AXopu
ﬂ merge( X1, X2) =Y
R

Merging may also introduce recursion through intermediate nonterminals.
There is one special case of recursion that has to be dealt with specialy. Whenever nonterminal
merging crestes arule
Y—-Y |

itisdeleted fromthegrammar. Therationale hereisthat such rulesdo not contributeanythingto derivations, as
chainsof Y’'s can aways be replaced by asingle Y without otherwise affecting the structure of the derivation.
(Thisaso impliesthat the counts associated with such rules can safely be ‘forgotten.’)

The convenience of the SNF format stems from the fact that nontermina merging can be applied
directly to theinitial grammar. Otherwise preterminal s would have to be created specifically for thispurpose,
a gratuitous complication of the merging operator.

4.3.1.4 Nonterminal chunking

Nonterminal merging alone cannot create context-free productionswith the usual embedding struc-
ture; therefore an additional operator is needed. A natural extension that (combined with merging) will
enable all possible CFG structures to be generated is the following: given an ordered sequence of nonter-
minals X1 X, ... X}, create anew nonterminal Y that expandsto X1 X5 ... X}, and replace occurrences of
X1X2... X, inRHSswithY. Wewill call thisoperation chunking and writeit aschunk(X1X>... X)) =Y.

7 — /\Xle...Xk,u (C)
ﬂ chunk(X1Xs... X4) = Y

4The simple direct recursion for SCFGs would roughly correspond to a self-loop on an HMM state. In general loops will involve
several intermediate states, of course.
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7z — AYu (e
Y — X]_Xz...Xk (CI)

The count ¢’ of the newly created productionisthe sum of the countsall productionswhere substitutionswith
Y have occurred.

Chunking can be viewed as a different kind of merging operation. Instead of identifying two
alternative submodel s (sublanguages generated by nonterminals) as being the * same,’ chunking hypothesizes
that two submodels form a unit by virtue of co-occurrence.® These two ways of creating new units of
description correspond exactly to the structuralist distinction between paradigmatic and syntagmatic rel ations
among lingui sticelements (de Saussure 1916; Hjelmslev 1953). A more explicit terminol ogy would therefore
use paradigmatic merging for the standard nonterminal merging operation, and syntagmatic merging for the
chunking operation. However, we will keep the short names ‘merging’ and ‘ chunking’ both for brevity and
to highlight the similarity of HMM state and SCFG nontermina merging.

Chunking by itself doesnot enable agrammar to generate new strings, and in SCFGsall stringsretain
their probability as a result of the operation. Therefore, unlike merging, an isolated chunking step involves
no generalization beyond the strings already generated. However, the nonterminal created by chunking may
itself feed into subsequent merging steps, thereby producing generaizations that wouldn’t otherwise have
been possible—thisis precisaly the purpose of introducing a second operator.

In principle chunking and merging can create any CFG structure in SNF, subject to the search
involved in finding the right sequence of operations, and assuming enough samples are available. Thiscan be
seen asfollows: given atarget grammar, we need a sampl e corpus that covers every rulein the grammar, i.e,
such that each production was used at least once to generate the corpus. After building the initia grammar
of flat productions as described in Section 4.3.1.1, we can then recreate the target grammar by merging and
chunking from the bottom up so as to obtain the rules in the generating grammar. Specifically, compare the
derivationsof theincorporated samples to the derivationsin the target grammar that generated them, merging
exactly those nonterminalsthat map to the same target nonterminal, and chunking exactly those nonterminals

that form phrasal unitsin the target grammar.

432 Anexample

A smple forma language example will illustrate the interaction of sample incorporation and
merging operators. Thetarget grammar generates the language {a™b™, n > 0}, and can be writtenin SNF as

S -->AB
-->ASB

A -->a

B -->b

Suppose the samples and their counts are

5Actually, thereisan implicit restriction on contiguousco-occurrence, which ispart of the CFG framework. Asaresult, discontinuous
syntactic units cannot be directly represented.
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ab (10)
aabb (5)
aaabbhb (2)

aaaabbbb (1)

The actual frequencies of occurrence of these samples are important in determining the result of learning, as
the likelihood function of the grammar depends on them. We list the actual log likelihood values (using ML
parameter estimates) after each step, so asto givean ideaof the‘ datafit’ component of the eventual evaluation
function.

For theinitial grammar we adopt the convention that preterminal names are formed by appending a
number to the uppercase version of the corresponding termina symbol. X, Y, . . . denote nonterminal s created

otherwise, and S is reserved for the start nonterminal. This givesthe followinginitial grammar:

S--> Al Bl (10)
--> A2 A3 B2 B3 (5)
--> A4 A6 A7 B4 B5 B6 (2)
--> A8 A9 A10 All B7 B8 B9 B10 Bll (1)

Al --> a (10)

A0 --> a (1)

BL --> b (10)

B10 --> b (1)

(log likelihood = -8.50).
The next several merging steps will collapse the preterminal s expanding to the same terminal, but

leave the likelihood unchanged:

S-->AB (10)
-->AABB (5)
-->AAABBB (2)
-->AAAABBBBB (1)

A-->a (30)

B-->b (30)

Thefirst chunking operation, chunk(A A B B) = X, also preserves the likelihood, but shortensthe

existing rules. The shorter description will generally result in a higher prior probability for the grammar.

S-->AB (10)
--> X (5)
-->AXB (2)
-->AAXBB (1)

X-->AABB (8)

A-->a (30)

B-->b (30)

The new nonterminal X can now be merged with S:
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S-->AB (10)
-->AABB (8)
-->ASB (2)
-->AASBB (1)

A-->a (30)

B-->b (30)

(log likelihood = -8.71).
Another chunking operation, chunk(A S B) =Y, produces

S-->AB (10)
-->AABB (8)
-->Y (2)
-->AYB (1)

Y-->ASB (3)

A-->a (30)

B-->b (30)

and again the new nontermina Y isimmediately merged with S:

S-->AB (10)
-->AABB (8)
-->ASB (4)

A-->a (30)

B-->b (30)

(log likelihood = -8.69).
After one more chunking, chunk(A B) = Z, and subsequent merging step, merge(Z, S) = S, the

grammar hasitsfina form

S-->AB (18)

-->ASB (12)
A-->a (30)
B-->b (30)

(log likelihood = -8.77).
AsintheHMM example, it isinstructiveto consider additional merging steps, which would lead to
various overly general grammars, such as

merge(A, B) log likelihood = -26.83
merge(S, A) log likelihood = -23.77
merge(S, B) log likelihood = -23.77

Thisconfirmsour intuitionthat the right timeto stop merging is characterized by alarge dropinthelikelihood.

We should therefore see a posterior probability maximum at this point under any reasonable prior.

4.3.3 Bracketed samples

The major source of added difficulty in learning SCFGs, as opposed to finite-state models comes
from the added uncertainty about the phrase structure (bracketing) of the observed samples. The chunking
operation was created precisaly to account for thispart of the learning process.
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Sample strings can be enriched to convey some of the phrase structure information. Bracketed
samples are ordinary samples with substrings enclosed by balanced, non-overlapping pairs of parentheses.
The bracketing need not be complete. For example, apartially bracketed sample for the example language of
Section4.3.2is

(aa(ab) bb

It is known that access to completely bracketed samples (equivalent to unlabeled derivation trees)
makes learning non-probabilistic CFGs possible and tractable, by applying techniques borrowed from finite-
state mode induction (Sakakibara 1990). Pereira & Schabes (1992) have shown that providing even partia
bracketing information can help the induction of properly structured SCFGs using the standard estimation
approach. This raises the question how bracketed samples can be incorporated into the merging algorithm
described so far.

This is indeed possible by a simple extension of the sample incorporation procedure described
above. Instead of creating a single top-level production to account for a new sample, the algorithm creates
a collection of productionsand nonterminalsto mirror the bracketing observed. Thusthesample(a a (a
b) b b) isadded to grammar using the productions

S-->Al A2 X B2 B3 (1)
X --> A3 Bl (1)

plus lexica productions for the preterminals created. Each pair or parentheses generates an intermediate
nonterminal, such as X above.

Merging and chunking are then applied to the resulting grammar as before. If the provided sample
bracketing is complete, i.e., contains brackets for al phrase boundariesin the target grammar, then chunking
becomes unnecessary. Merging aone can in principle produce the target grammar in this case, provided
samplesfor all productionsare given.

434 SCFG priors

In choosing prior distributionsfor SCFGs we again extend various approaches previously used for
HMMs. As before, a model M is decomposed into a discrete structure Mg and collection of continuous
parameters 65;. Again, we have a choice of narrow or broad parameter priors, depending on whether the
identity of non-zero rule probabilitiesis part of Mg or 63 (Section 3.3.3). However, notice that broad
parameter priors become problematic here since the set of possible rules (and hence parameters) is not a
priori limited as for HMMs. As the length of RHSs grows, the number of potential rules over a given set of
nonterminals also grows (exponentially). This makes narrow parameter priors inherently ssmpler and more
natural for SCFGs.

The following combination of priors was used in the experiments reported below. The parameter
prior P(6xr|Ms) is a product of Dirichlet distributions (Section 2.5.5.1), one for each nonterminal. Each
Dirichlet thus allocates prior probability over all possible expansions of a single nonterminal. The total prior
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Figure 4.1: Geometric and Poisson length distributions, for identical distribution mean (3.0).

weights for each of the Dirichletsare equal and constant (oo = 1.0). The Dirichletsare symmetrical, i.e., all
expansions of a nonterminal are a priori equaly likely. Again, we make the convenient simplification that
the nonterminalsare a priori independent in their expansions.

Asfor P(Ms), two simple description length prior were used. Inthefirst variant, each nonterminal
production isencoded as a string of nonterminalsand an end marker, each symbol requiringlog |A| + 1 bits.
Lexica productions need log |X| to encode.

While simple, this prior has the effect of |etting the prior length of productions have the form of a
geometric distribution, which isvery unnatural, especially for natural language grammars. A second version
of the description length prior was therefore devised which corresponds to production lengths drawn from a

Poisson distribution
e Hun

p(n;p) =

n! '
where n is the length and y its prior mean. Figure 4.1 shows both geometric and Poisson prior length
distributions for a mean length of 3.0. Since the minimum length of a production in our case is one (not
zero), the encoding of a production of length & takeslogp(k — 1; ) bits, pluslog || bitsfor each of the &
nonterminals.

In either case, the total description length DL( M ¢) for the grammar productionsis computed, and

apriorisassignedto Mg such that

log P(Ms) = —DL(Ms)
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The criterion used for model evaluation is the posterior of the model structure, as discussed in
Section 2.5.7. 1t is approximated using the same Viterbi method as described for HMMs (Section 3.4.3).
This again has the advantage that the posterior is decomposed into a product of terms, one for each grammar
nonterminal. Changes to the posterior are computed efficiently by recomputing just the terms pertaining to
nonterminal s affected by the merging or chunking operation.

435 Search strategies

The question of how to search efficiently for good sequences of merging operators becomes more
pressing in the case of SCFGs. The main reason isthat theintroductionof the new operator, chunking, creates
a more complex topology in the search space. In addition, the evaluation of chunking step is not directly
comparable to merging, as chunking does not have a generalizing effect on the grammar (it can only affect
the prior contribution to the posterior).

We have experimented with several search strategies for SCFG learning, discussed below. Clearly
more sophisticated ones are possible, and await further study.

Best-first search  Thisisthestraightforward extension of our approach to mergingwithHMMs. All operator
types and application instances are pooled for the purpose of comparison, and at each step the locally best
one is chosen. Thisis combined with the simple linear look-ahead extension described in Section 3.4.5 to
help overcome local maxima.

This simple approach often fails because chunking typically has to be followed by several merging
steps to produce an overal improvement. The look-ahead feature often doesn’t help here as other chunks get

in the way between a chunking step and the ‘right’ successive merging choices.

Multi-level best-first search  One possible solution to the above problem is to make the search procedure
aware of the different nature of thetwo operators, by constraining theway inwhich they interact. Empiricaly,
the following simple extension of the best-first paradigm seems to work generally well for many SCFGs.

The basic idea is that the search operates on two distinct levels, associated with merging and
chunking, respectively. Search at the merging level consists of a best-first sequence of merging steps (with
look-ahead). Search at the second level chooses the locally best chunking step, and then proceeds with a
search at level 1. (Clearly, this approach could be generalized to any number of search levels).

Notice that in this approach, the chunking steps are not evaluated by trying an exhaustive sequence
of merges following each possible choice. Thiswould entail an overhead that isquite significant even in small

cases.

Beam search In abeam search the locality of the search isrelaxed by considering a pool arelatively good
models simultaneoudly, rather than only asingle one asin best-first search. In Section 3.3 we remarked that
beam-search for HMMsseemsto only very rarely give worthwhileimprovements over the best-first approach.
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However, beam search can producesignificantly improved search resultsfor many SCFGs, precisely
because of the interaction between the different search operators and the impact this has on the proper
evaluation of choices. If the beam width is made sufficiently large, the effects of combinations of merging
and chunking will be assessed correctly, even if the two types of operators are not treated specially. (Adding
amulti-level approach here might result in further improvements to efficiency and/or results, but hasn’t been
investigated yet.)

For concreteness we give a brief account of the beam search algorithm used, especialy since the
open-ended nature of the search (absence of a goa state) makes it different from standard beam search
algorithms found in the literature. The beam is alist of nodes ordered by descending evaluation score. In
our case, a hode corresponds to a model (grammar), and the evaluation function is its posterior probability.
Nodes can be either expanded or unexpanded, depending on whether successor nodes have been generated
from them, using the search operators. When anodeis expanded its descendants are inserted into the beam as
unexpanded nodes, unlessthey are aready foundthere. A singlestep inthe beam search consistsof expanding
all unexpanded nodes in the current beam, using all available operators.

The scope of the beam search is determined by two parameters: The beam depth is the maximum
total number of nodesin the beam, whereas the beam width gives the number of unexpanded nodes alowed in
the beam. During expansion of the beam, low-scoring nodes are truncated from the beam so as to not exceed
either width or depth. (Alternatively, one may aso limit nodes in the beam to those scoring within a certain
tolerance of the current best node.) The combination of conditions delimiting the e ements of the beam are
also known as the beam criterion.

The search terminates when no unexpanded nodes satisfy the beam criterion, i.e., only expanded
nodes remain in the beam. The first, best-scoring node from the beam isreturned as the result of the search.

Beam search as described here is a generalization of the (one-level) best-first search introduced in
Section 3.4.5: a beam search of depth d and width one is equivaent to a best-first search with d steps of
lookahead.

Search in grammar spaces raises the question of how the equivalence of two models should be
determined efficiently. Thisis necessary to avoid duplicate model s from crowding out worthwhilecontenders
inthebeam. Duplicatesare generated pervasively, asthe same operators, such as merging, applied in different
order often yield identical results. To address this problem for SCFGs and similar types of models we use a
two-pronged approach. First, efficient methods for computing the posteriors of models, without necessarily
computing the full models themselves are applied, using incremental evaluation strategies as described in
Section 3.4.3. If twomodel have different posterior probabilitiesthey must be structurally different. Secondly,
if necessary, we computeahash function of the CFG structure, whichisa pseudo-random number that depends
only on the structure of the productions, but not on their order or the names of the nonterminals used. If two
grammars yield the same hash code they are considered identica for the purposes of beam search. Thisleaves
asmall probability that a model might mistakenly be discarded.®

61 the hash function were optimal, that probability would be 2—28 in the current implementation.
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4.3.6 Miscellaneous
4.3.6.1 Redricted chunking

We aready observed that unrestricted chunking can produce arbitrary CFG structures. For practical
purposes, however, the set of potential chunks needs to be restricted to avoid generating an infeasibly large
number of hypothesisin each search step. Specifically, the following restrictions can optionaly be imposed.

1. No null productions. These would result from proposing empty chunks.
2. No unit (or chain) productions. These would be the result of singleton chunks.

3. A sequence of nonterminals (of any length exceeding 1) needs to occur at least twice in the grammar to
be a candidate for chunking.

4. A chunk isreplaced wherever it occurs, as opposed to choosing only a subset of the occurrences.

It is not known what sort of globa constraint the last two restrictions place on the grammars that can be
inferred, since both make reference to the form of an intermediate grammar hypothesis, which depends on

the actually occurring samples and the dynamics of the search process.

4.3.6.2 Chunking undone

Occasiondly a chunking operation and the nonterminals created for it become superfluous in
retrospect, because only one occurrence of the nontermina remainsin the grammar as aresult of productions
merging. In thiscase it is beneficia to undo the chunking operation, a step we call unchunking. Note that
the final outcome in such cases could have been achieved by not choosing to chunk in the first place, but

unchunking providesatrivial and convenient way to recover from chunksthat seemtemporarily advantageous.’

4.3.6.3 Efficient sampleincorporation

The simple extension of the batch merging procedure to an incremental, on-lineversion was aready
discussed for the HMM case (Section 3.3.5), and can be applied unchanged for SCFGs. This includes the
use of a prior weighting factor A to control generaization and prevent overgeneralization during the early
rounds of incremental merging (Section 3.4.4). Incremental merging is the default method used in all the
experiments reported bel ow, unless otherwise noted.

As aresult of incremental nonterminal merging, a sequence of nonterminals that was previously
the subject of chunking can reappear. In that case the chunking operation is re-applied and the previously
allocated LHS nonterminal is used in replacing the re-occurring sequence. This specia form of the chunking
operator isknown as rechunking.

Various additiona strategies are possible in order to reduce the number of new nonterminals
created during sample incorporation, thereby reducing subsequent merging work. The drawback of al these

“The unchunking operation was adapted from Cook et al. (1976) after we had noticed the similarity between the two approaches (see
the discussion in Section 4.4.3)
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approaches is that they reuse previously hypothesized grammar structures, possibly preventing the algorithm
from considering better aternatives.

1. Avoid duplicate samples: incorporate duplicate samples only once, with appropriately adjusted counts.
Thisisatrivia optimization that can never do harm.

2. Try parsing samplesfirst beforeresorting to theordinary creation of new productions. If anew sampleis
parsed successfully counts on the old productions are updated to reflect the new sample.® This method
subsumes strategy 1 above. (See Section 6.5.3 for waysto efficiently handle the parsing of bracketed
samples, which is needed if thismethod isto applied to structured samples.)

3. To saveinitia merging of preterminals, reuse existing preterminalswhere possible. This precludesthe
creation of grammars with ambiguity at the level of lexical productions.

4. Try to parse the new sample into string fragments using existing rules, and add only a top-level
production to link these fragments to the start symbol. This subsumes both strategy 2 and strategy 3.
(Section 6.5.4 describes one approach to parsing ungrammatical samples into fragments that can be
used here.)

Unless noted otherwise, only strategy 2 was used in obtaining the results reported here.

4.4 Reated Work

441 Bayesan grammar learning by enumeration

We aready mentioned Horning (1969) as an early proponent of the Bayesian version of grammar
inferenceby enumeration, astheprincipleisgenera enoughto beapplied (intheory) to any typeof probabilistic
grammar. Horning’s focus was actually on probabilistic CFGs, and the formal device used to enumerate
grammars, aswell asto assign prior probabilities, was agrammar-generating grammar, or grammar grammar.
As expected, enumeration is not practical beyond the simplest target grammars, but Horning's work is
theoretically important and was one of thefirst to point out the use of posterior probabilitiesasaformalization
of thesimplicity vs. datafit trade-off.

44.2 Merging and chunking based approaches

The idea of combining merging and chunking with a hill-climbing style search procedureto induce
CFG structures seems to have been devel oped independently by several researchers. Below isalist of those
we are aware of.

8|f the sample is ambiguous the counts could be updated for all derivation according to their respective probabilities, or using only
for the Viterbi derivation. In either case the likelihood of the sample will be underestimated by the Viterbi-based computation of the
posterior probability. Updating according to the Viterbi derivation should favor the creation of unambiguousgrammar structures, but no
detailed comparisons have been done on thisissue.
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Cook et al. (1976) exhibit a procedure similar to ours, using a somewhat different set of operators.®
Their approach is also aimed a probabilistic SCFGs, but uses a conceptualy quite different evaluation
function, which will be discussed in more detail below, asit illustratesa fundamental feature of the Bayesian
philosophy adopted here.

Langley (1994) discusses a non-probabilistic CFG induction approach using the same merging and
chunking operators as described here, which in turnisbased on that of Wolff (1978). Langley’s CFG learner
also alternates between merging and chunking. No incremental learning strategy isdescribed, although adding
one aong the lines presented here seems straightforward. The evaluation function is non-probabilistic, but
incorporates several heuristicsto control data fit and a bias towards grammar ‘simplicity, measured by the
total length of production RHSs. A comparison with our Bayesian criterion highlights the considerable
conceptua and practical simplification gained from using probabilities as the universa ‘currency’ of the
evaluation metric.

The present approach was derived as a minima extension of the HMM merging approach to
SCFGs (see Section 3.5 for origins of the state merging concept). As such, it is adso related to various
induction methods for non-probabilistic CFGs that rely on structured (parse-tree skeleton) samples to form
tree equivalence classes that correspond to the nonterminalsin a CFG (Fass 1983; Sakakibara 1990). Aswe
have seen, merging aloneis sufficient as an induction operator if fully bracketed samples are provided.

443 Cook’sGrammatical Inference by Hill Climbing

Cook et al. (1976) present a hill-climbing search procedure for SCFGs that shares many of the
features and ideas of ours. Among these is the best-first approach, and an evaluation metric that aims to
balance ‘complexity’ of the grammar against ‘discrepancy’ relative to the target distribution. A crucid
difference isthat only the relative frequencies of the samples, serving as an approximation to the true target
distribution, are used.

Discrepancy of grammar and samplesiseval uated by ametric that combines el ements of thestandard
rel ative entropy with an ad-hoc measure of string complexity. Complexity of thegrammar islikewise measured
by amix of rule entropy and rule complexity.'° Discrepancy and complexity are then combined in aweighted
sum, where theweighting factor is set empirically (althoughtheinduction procedureis apparently quiterobust
with respect to the exact value of this parameter).

To see the conceptual difference to the Bayesian approach, consider the introductory example from
Section 4.3.2. The four samples (ab, aabb, aaabbb, aaaabbbb) observed with relative frequencies (10, 5, 2,
1) are good evidence for a generalization to the target grammar that generates {a"b",n > 0}. However, if
the same samples were observed with hundred-fold frequencies (1000, 500, 200, 100), then the hypothesis
{a™b™, n > 0} should become rather unlikely (in the absence of any additional samples, such as a°b°, a®h°,
etc.) Indeed our Bayesian learner will refrain from this generalization, due to the 100-fold increased log

9Thanksto Eugene Charniak for pointing out this reference, which seemsto be less well-known and accessible than it deserves.
10The exact rationale for these measures is not entirely clear, as the complexities of strings are determined independently of the
underlying model, which is inconsistent with the standard information theoretic (and MDL) approach.
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likelihood loss in that case. Algorithms based on just the relative frequencies of samples, on the other
hand, will be indifferent to this change in absolute frequencies. Also, the Bayesian approach gives an
intuitiveinterpretation to the weighting factor that is useful in practice to globally balance the complexity and
discrepancy terms (Section 3.4.4).

Cook et al. (1976) propose a larger set of operators which partly overlaps with our merging and
chunking operations. Chunking is known under the name ‘subgtitution.” Merging is not directly available,
but similar effects can be obtained by an operation caled ‘digunction, which creates new nonterminals
that expand to one of a number of existing nonterminas. They also have specia operations for removing
productionswhich are subsumed or made redundant by others. These can mostly me emulated with merging,
although explicit testing for, and elimination of redundant productionsis also useful in our algorithm, since
it shortcuts combinations of induction steps (i.e., they are macro operatorsin search parlance).!

Cook et al. (1976) evaluate their algorithm using a number of benchmark grammars; these will be

reexamined below using our Bayesian a gorithm.

45 Evaluation

The merging agorithm for SCFGs has been evaluated in a number of experiments. These fall
naturally into two broad categories: simple formal languages and various grammar fragments modeling

aspects of natural language syntax.

45.1 Formal language benchmarks

This group of test grammars has been extracted from the article by Cook et al. (1976) discussed in
Section 4.4. Except for thelast two, they represent examples of simple context-freeformal languages as they
aretypically given in textbooks on the subject.

The main advantage of using this same set of grammars is that the results can be compared. Since
the two agorithms (ours and Cook’s) have similar underlying intuitions about structural grammar induction
we expect similar results, but it isimportant to verify that expectation.

Experimental setup To replicate the examples given by Cook, we used the following procedure. The
samples given in the paper are used unchanged, except that sample probabilitieswere converted into counts
such that the total number was 50 for each experiment. These were then incorporated into initial grammars
and merged in batch mode. Our SNF grammar format could introduce a subtle inductive bias not present
in Cook origina experiments. The merging procedure was therefore constrained to aways maintain a
one-to-one correspondence between terminals and preterminals, effectively making terminal s redundant and
letting preterminals function as the true terminals, in terms of which arbitrary productions are now possible.

Chunking of single nonterminalswas allowed.

1 Notice how repeated merging and chunking effectively eliminate redundant productionsin the example of Section 4.3.2.
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Language Sample nho. Grammar Search
Parentheses 8 S0 ]SS BF
a® 5 S —aal|SS BF
(ab)" 5 S —ab|Ss BF
ab” 5 S — ab|aSh BF
wew? w € {a,b}* 7 S —claSal|bSh BS(3)
Addition strings 23 S—alb|(S)]|S+S BS(4)
Shape grammar 11 S = 4y |vs BS(4)
Y — a|cY
Basic English 25 S — tama|heT |sheT|itT | BSO)

1

they V |youV |weV
— thisC |that C

isA

— aeA

1

man | woman
there | here
isazZ | ZT

1

Qx> N <N
}

1

Table 4.1: Test grammars from Cook et al. (1976).

Sample number refers to sample types, not tokens. Cook’s samples typicaly represent the
highest probability strings from each sample grammar, with relative frequencies matching the
probabilities. Sample countswere scaled tototal 50 for al experiments. Grammar isthegrammar
found (identical to the one given by Cook). To save space the grammars are written in Cook’s
notation, not the SNF used in our experiments. Search is the simplest search method needed to
obtain the result, either best-first (BF), or beam search with width n (BS(n)).

‘Shape grammar’ refersto a CFG used by Lee & Fu (1972) to mode two-dimensional chromo-
some pictures (with samples from that paper). ‘Basic English’ are the first 25 sentences from a
language teaching textbook (Richards & Gibson 1945).

The priorsused were the‘ standard’ ones: asymmetrical Dirichlet distribution over each set of rule
probabilitieswith «g = 1.0, and the simple description length prior on the grammar structure. No extragloba
weighting on the prior was applied (A = 1.0).

Results The grammars found by the merging agorithm matched the ones given by Cook in all cases.
Table 4.1 gives a summary of the languages, samples and the grammars found.

The exact match of the results is somewhat remarkable since the evaluation function used in our
algorithm differs significantly from that used by Cook (see the discussion in Section 4.4.3). The search
operators and procedure are a so different, athough based on similar intuitions. This seems to indicate that
the languages in question are all fairly robust with respect to any reasonable formalization of the trade-off
between datafit and grammar complexity.

Interestingly, the number of samples chosen, 50, wasimportant in matching Cook’ sresult. Doubling
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the number caused the resulting grammars to be less genera in several cases, and giving significantly less
samples (10) would produce over-genera results. We already discussed why an evaluation function should,
infact, depend on the actual number of samples, not just their relative frequencies, and one can conclude that
Cook’s evaluation function is tuned to be roughly equivalent to the Bayesian posterior for a sample count
around 50.

Palindromes The simple palindrome language {ww ', w € {a, b} *} has proven to be areatively difficult
benchmark language in several investigations into CFG learning algorithms. Cook et al. (1976) discuss it
briefly as a language beyond the reach of their search operators, noting that it would require a chunking
operator that does not blindly replace all occurrences of a chunk. To learn this grammar, one has to start
chunking aa and bb, sequences that typically also occur in non-center position, thereby misleading a strictly
greedy learning strategy.

Pereira& Schabes (1992) use the same language to show that standard SCFG estimation does very
poorly in finding a grammar of the right form when started with random initial parameters. The results of
estimation can beimproved considerably by using bracketed samplesinstead (although the resulting grammar
il givesincorrect parse structure to some strings).

Indeed our algorithmfailsto find agood grammar for thislanguage using only best-first search, due
to the limitations of the chunking operation cited by Cook.*?> However, the result improved when applying
the more powerful beam search (beam width 3).

S -->
-->
-->
-->
-->

A-->
B -->

* k*

O NW>W>
nunnwr
W >

Thisisamost aperfect grammar for thelanguage, except for the production marked by * * * . This production
isredundant (not strictly required for the derivation of any of the samples) and can be eliminated by asimple
Viterbi reestimation step following the search process. (The Viterbi step is meant to correct counts that have
become inaccurate due to the optimistic update procedure during merging.)
While this result in itself is not very significant it does show that the simple merging operators
become considerably more powerful when combined with more sophisticated search techniques, as expected.
Incidentally, the palindrome language becomes very easy to learn from bracketed samples, using

merging only.

2For concreteness, we used the sametraining setup as for the easier palindrome languagewith center symbol (fifth in Table 4.1). The
samplesand their number where identical except for removal of the center marker c.
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45.2 Natural language syntax

In this section we show examples of applying the Bayesian SCFG merging algorithm to simple
examples of natural language syntax. A strong caveat isin order at this point: these experiments do not
involve actual natural corpus data. Instead, they make use of artificial corpora generated from grammars that
are supposed to model various aspects of natural languages in idealized form, and subject to the inherent
congtraints of context-free grammars.

The main goal in these experiments will be to test the ability of the agorithm to recover specific
typica grammatica structures from purely distributional evidence (the stochastically generated corpora).
Applying the agorithm to actual data involves additional problemsthat will be discussed towards the end.

Asindicated in Section 4.3.4, we used a prior for production lengths corresponding to a Poisson
distribution. The prior mean for the length was set to 3.0.

Lexical categories and constituency The following grammar will serve as a baseline for the following
experiments. It generates simple sentences based on transitive and intransitive verbs, as well as predications
involving prepositional phrases. Unless otherwise indicated, all productions for a given LHS have equa
probability.

S--> NP VP
NP --> Det N
VP --> Vt NP

--> Vc PP
--> Vi
PP --> P NP
Det --> a
--> the
Vt --> touches
--> covers
Ve -->1is
Vi -->rolls
--> bounces
N -->circle
--> square
--> triangle
P --> above
--> bel ow

The corresponding corpus contains 100 randomly generated sentences, including repetitions. (The
total number of distinct sentences generated by the grammar is 156.) The following samples illustrate the
range of alowed constructions:

the circle covers a square
a square is above the triangle
a circle bounces
The corpus was given as input to incremental, best-first merging. The algorithm produced the

eventua result grammar after having processed thefirst 15 samples from the corpus.
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The result grammar is weakly equivaent to (generates the same sentence as) the target, and has
identical lexical rules. However, the sentence-level productionsare less structured: *

S-->NP VCP NP (28)
> NP VI (39)
--> NP VT NP (33)

NP --> DET N (161)

The algorithm was thus successful in grouping terminals into appropriate lexical categories and identifying
the pervasive NP constituents. The log posterior probability of this grammar (-230.30769) is dightly below
that of the target grammar (-230.1136).

However, amore extensive beam-search (width 30) finds an alternative grammar exhibiting adeeper

phrase structure:
S--> NP VP (100)
VP --> VI (39)
--> X NP (61)
X --> VT (33)
-->VCP (28)
NP --> DET N (161)

This structure turns out to have a somewhat higher log posterior probability than the target (-228.658).
Chunking (VC P) is prefered to the standard (P NP) because it alows merging the two VP expansions
involving VC and VT, respectively.

Interestingly, theimportance of the prior distributionfor the production lengthsisalready evident in
this experiment. Wereit not for the Poisson prior length distribution, theflat productionsin the first grammar
above would actually yield a higher posterior probability than the target grammar.

Recursive embedding of constituents To get PP constituents based only on distributional evidence, the
grammar can be enriched, e.g., with topicalized PPs and PPs embedded in NPs. The changed productionsare

S-->NP W [ 3/ 5]
--> PP COMMA NP Vi [ 1/ 5]
--> PP Vc NP [ 1/ 5]

NP --> Det N [ 3/ 4]

--> Det N PP [ 1/ 4]

COWA --> |

This extends the range of sentence to samples such as

above a square is the square

the circle belowthe triangle belowa circle touches the triangle
above a triangle , a circlerolls

bel ow a square , the triangl e above the square bel ow t he square bounces

13| nduced grammars in this section are notated with nonterminal labels that chosen from the target grammar where possible, so asto
enhancereadability. The actual nonterminal names are of courseirrelevant to the algorithm.
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After processing 100 random samples of thisgrammar (which now generates an unbounded number
of sentences), the following phrase structure rules are found.

S--> NP VC PP (22)
> NP VI (10)
--> NP VT NP (29)
--> PP COMMA NP VI (19)
--> PP VC NP (20)

PP --> P NP (112)

NP --> DET N (241)
--> NP PP (51)

The induced rule structure differsin two aspects from the target. Firstly, no VP phrase structure in inferred.
This is not surprising since each of the VP redizations appears only in a single rulg, i.e, there is no
generalization or greater succinctness to be gained from positing a VP constituent. Secondly, the embedding
of PPin NP isrealized in two, rather than one recursion: one left-recursive through the NP rule, and one
tail-recursive through the PP rule. This redundancy also leadsto adlightly suboptimal score compared to the
target grammar. Still, the grammar found is clearly weakly equivalent to the target.

Agreement Another pervasive phenomenon in natural languages is agreement, whereby two lexical items
or constituents are forced to share one of more (abstract) features such as number, gender, case marking,
etc. For our purposes we can construe the phonologically motivated alternation of English determiners (‘&
and ‘the’ versus ‘an’ and ‘thee’) as a case of NP-internal agreement. A minimal extension of the basdline
grammar to thisend isthe following (only nontermina sthat differ from the baseline are shown):
NP --> Detl N1
--> Det2 N2
Detl --> a
--> the
Det2 --> an
--> thee
N1 --> circle
--> square
--> triangle
N2 --> arc
--> octagon

After merging 40 random samples, these productionswere in fact generalized correctly, while the
remainder of the grammar was identical to the one learned before from the baseline corpus.

It should be noted that context-free grammars are not particularly suited to the description of
agreement phenomena, especialy if the agreeing constituents are separated by material not affected by the
agreement. A CFG description in this case has to replicate syntactic categories up to the smallest enclosing
constituent level 14

14The standard solution to this problem is to factor agreement into a separate description, usually using a feature-based formalism.
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The problem is demonstrated by the following minima extension of the baseline grammar to

incorporate singular and plural NPs and enforce number agreement between main verb and subject NP,

S --> NP_SG VP_SG
--> NP_PL VP _PL
NP --> NP_SG
--> NP_PL
NP_SG --> DET N_SG
NP_PL --> DET N _PL
VP _SG --> VI _SG
--> VT_SG NP
--> VC _SG PP
VP PL --> VI _PL
--> VT_PL NP
--> VC PL PP
PP --> P NP
DET --> the

N PL --> circles | squares | triangles
N SG-->circle | square | triangle

P -

VC_
VC_
Vi
Vi
VT_

-> above | bel ow
SG-->1is

PL --> are

SG --> bounces | rolls
PL --> bounce | roll

SG --> covers | touches

VT_PL --> cover | touch

The grammar now generates sentences including

t he
t he
t he
t he

circl e bounces

circles bounce

square is below the triangles
squares are below the triangles

This extensions of the scope of the language comes at a considerable price: the categoriesN, NP, VPR, Vt, Vc,
Vi al have to be duplicated to encode the number feature.
Subjecting a 200-sentence sample to the merging algorithm exposes an additional, unexpected

problem. The grammar learned isweskly equival ent to the target grammar; in particular, it containsal of the

lexical categoriesin the target grammar. However, the phrase structure rules found are quite different: they

group the verbs and prepositions with the subject, rather than the object NPs.

S --> NP_SG VI_SG (27)
--> NP_PL VI_PL (37)
--> X NP_SG (76)
--> X NP_PL (60)

X --> NP_SG VT_SG (37)
--> NP_PL VT_PL (33)
--> NP_SG VC_SG P (37)
--> NP_PL VC PL P (29)

NP SG --> DET N _SG (177)

NP _PL --> DET N PL (159)
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This grammar has a marginaly lower posterior probability than the target grammar. The reason why even
fairly wide beam search consistently finds this phrase structure, rather than the traditional one, is subtle, and
has to do with the inherent representational problems for agreement phenomenain CFGs.

Because agreement hasto bemediated by duplication (or rather, non-merging) of otherwiseidentica
nontermina symbols up to the smallest phrase level enclosing the agreeing el ements, it is advantageous to
group agreeing, rather than non-agreeing parts of the syntax. This strategy minimizes the number of extra
nonterminalsrequired. The two fundamenta chunking alternatives found in the example (verbswith subject,
vs. with object) only regain equal description length once al other generalizations have been found. Thus a
localized search will always prefer the subject-verb grouping.

Presumably a actua natural language learner would have access to other cues that favor chunking
verbswiththeir objects. Thiscan at |east be simulated by modifyingthe samplesto contain partia bracketings,

egd.

the square (is above the triangle)
the triangles (are bel ow circles)

It not necessary to add partia bracketing to all samples, since some partially bracketed samples are enough
to make chunking of the remaining ones in the appropriate way the best-scoring decision. The following
grammar was |earned from the same 200-sentence corpus as before, modified so that that 50% of the samples
had explicit VP bracketing. Asexpected, thisleadsto thetraditional phrase structure, including the necessary

nonterminal duplication to account for agreement.

S --> NP_SG VP_SG (101)
--> NP_PL VP_PL (99)
VP SG --> VI _SG (27)
--> VT_SG NP_SG (19)
--> VT_SG NP_PL (18)
--> VC_SG PP (37)
VP PL --> VI_PL (37)
--> VT_PL NP_SG (17)
--> VT_PL NP_PL (16)
--> VC PL PP (29)
PP --> P NP_SG (40)
--> P NP_PL (26)
NP SG --> DET N _SG (177)
NP _PL --> DET N_PL (159)

Incidentally, the reason the productions

NP --> NP_SG
--> NP_PL

are not found is that chunking always replaces all occurrences of a chunk. As a result, the operations
chunk(NP_SG) and chunk(NP_PL) would interfere with the productionsthat handle the agreement, and are
rightfully rejected.
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A.
S--> NP VP S --> NP VP
VP --> Ver bl VP --> Verb NP
--> VerbT NP NP --> Art Noun
NP --> Art Noun --> Art Noun RC
--> Art AP Noun RC --> Rel VP
AP --> Ad] Verb --> saw | heard
--> Adj AP Noun --> cat | dog | nouse
Art --> the Art -->a | the
Verbl --> ate | slept Rel --> that

VerbT --> saw | heard
Noun --> cat | dog
Adj --> big old

Figure 4.2: Example grammars from Langley (1994).

453 Sampleordering

We conclude with the two pseudo-natural language examples from Langley (1994), where a hill
climbing learner for non-probabilistic CFGs is studied (see Section 4.4). The point here will be that the
ordering of samples during incremental processing can have a considerable effect on the outcome, or on the
speed of the learning process.

The grammars shown in Figure 4.2 exhibit two types of recursion. Grammar A containsan NPrule
for an arbitrary number of adjectives, suchasin

the old big cat heard the big old big dog

Grammar B issimilar but allows embedded rel ative clauses instead of adjectives. It yields sentences such as

a nouse heard a dog that heard the nmouse that heard the cat

For the purpose of our experiment uniform probabilitieswere added to the origina non-probabilistic
CFG productions, and were used to generate 100 random samples each (sample A and B, respectively). The
samples were presented in one of two conditions: random order, or in order of increasing sentence length
(number of words).*> Both samples were processed by incremental merging and chunking.

Sample A ordered by sentence length resulted in a grammar that contained three redundant rules
that could be removed by reestimation. The fina grammar was:

S-->NP VI (57)
--> NP VT NP (43)
NP --> DET N (67)
--> DET NP1 (76)
NP1 --> ADJ N (76)
--> ADJ NP1 (71)
DET --> the (143)
N --> cat (73)

15The order among samples of the same length remained random.
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--> dog (70)
ADJ --> big (75)
--> old (72)

VI --> ate (29)
--> slept (28)
VT --> heard (24)
--> saw (19)

This is essentially the phrase structure of the target grammar, except that the recursion in noun phrases is
implemented differently.®

On the other hand, when given the unordered samples, the algorithm produced a grammar that
contained nine redundant rules. However, the same grammar as above was found by removing these rules,
restarting the search and pruning three more redundant rules.

With ordered samples, 16 of the 100 samples required creation of new rules, and 212 merging steps
were necessary to produce the final grammar, taking 49 seconds total CPU time. The unordered samples, on
the other hand, lead to new productionsfor 20 samples, 1374 merges, and took 174 seconds.

For sample B, the outcome was similar. Ordering the samples by length resulted in the following
grammar, an acceptable rendering of the original.

S--> NP VP (100)
VP --> V NP (295)
NP --> DET N (395)
--> NP RC (195)
RC --> REL VP (195)
DET --> a (196)
--> the (199)

N --> cat (137)
--> dog (118)
--> nouse (140)
REL --> that (195)
V --> heard (152)
--> saw (143)

A comparison experiment on the unordered list of sampleshad to be aborted due to excessively long runtime.
Therearesaeveral reasonswhy ordering samplesby lengthfor incremental merging leadstoimproved
speed and accuracy.

e ‘Similar’ samples, which eventually |ead to asinglegeneralization are presented closer together, thereby
reducing the timeit takes to hypothesize and accept a generalization.

e Asaresult, the number of samples and corresponding states that are not yet fully merged into the model

structure are minimized, reducing the search space overall.

16 A beam search on the same data produced agrammar that was actually better than the target grammar, i.e., it was weakly equivalent,
produced essentially the same phrase structure and used shorter rules.
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e Ruleslearned from smaller samples tend to be useful in structuring larger samples (but not the other
way around). Thus the analyses of the previous samples can effectively guide the search for merges

based on the longer, more recent ones.

Aninteresting related result from non-probabilisticlanguageinductionisthat strictly (Iexicographi-
cally) ordered sample presentation makes thelearning problem for certain classes of grammar provably easier
(Porat & Feldman 1991).

454 Summary and Discussion

The above artificial examples show that SCFG learning based purely on distributional evidence and
the generic Bayesian simplicity bias can correctly identify several of the common linguisticstructures. It also
shows that this limited evidence can be mideading, especially when it comes to finding the ‘right’ phrase
structures. Thisis hardly surprising, given that alot of the cues for human judgments of linguistic structure
presumable come from other sources, such as the semantic referents of the syntactic elements, phonological
cues, morphological markers, etc. (Morgan et al. 1987).

In abrief experiment, we applied our algorithm to a 1200 sentence corpus collected with the BeRP
speech system (Jurafsky et al. 1994a). The a gorithm produced mostly plausiblelexical categories and alarge
number of chunks corresponding to frequent phrases and collocations. However, the generalization achieved
was nowhere near what would be required for a sufficient coverage of new data. The problems can partly
be addressed by simple preprocessing steps, such as tagging of lexical items using standard probabilistic
approaches that achieve reasonable performance on data of this sort (Kupiec 1992b). Non-traditiona phrase
structuring may not be a problem if sentence-level generalization is the main goa for an application. Also,
bracketing may be induced separately using bracketing modelstrained from structured data (Brill 1993). We
plan to investigate such hybrid strategies in the future.
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Chapter 5

Probabilistic Attribute Grammars

5.1 Introduction

This chapter describes an extension of stochastic context-free grammars (Chapter 4) that alowsthe
probabilistic modeling of simplekindsof features or attributesattached to the nonterminalsin agrammar. For
example, we can use these attributes to represent limited semantics of sentences and their constituents. We
will call this extension probabilistic attribute grammars (PAGS), athough the particular formulation chosen
here is only one such possible extension, and isminimal in several ways.

The learning problem associated with PAGs is as follows. Samples from a PAG language are
pairs of sentence stringsand attribute-value sets. (The attributes and their values implicitly describe the root
nonterminal of the sentence). As with other types of grammars, the goal isto find a PAG that generates the
presented samples, possibly with generalizations extracted from the samples. Since PAGs are probabilistic
models their quality can be evaluated using the same quantities (likelihoodsand prior probabilities) as usual.

We start by defining the PAG extension to SCFGs (Section 5.2). A parallel extension of the SCFG
merging algorithm so that it can infer simple PAGs is given in Section 5.3. Experiments drawn from the g
language |earning scenario introduced in Chapter 1 are described in Section 5.4.

Due to its simplicity, the current PAG formalism can be little more than an illustration of how
the standard probabilistic models and the learning-by-merging principle can be generalized to new types of
grammars. Section 5.5 discusses limitationsand problems with the current approach and points out possible

remedies. Section 5.6 summarizes the main points.

5.2 Probabilistic Attribute Grammars

Attributegrammarsare afamiliar extension of non-probabilistic CFGsknown from compiler theory
and elsewhere (Aho et al. 1986). Attributesare ‘registers’ or ‘dots attached to the nontermina nodesin a

context-free parse tree, and can hold ‘values' for various purposes, typically pertaining to the semantics of
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the language. The context-free productions are augmented with attribute specifications that determine how a
nonterminal s attributes are computed as a function other nonterminals’ attribute val ues and terminals.*

Many linguistic formalisms based on context-free grammars employ a related concept, typically
known by the name of ‘features’ Like attributes, these are attachments to the nonterminals in the grammar,
but their values and their specifications are usually more restricted, in the form of directed acyclic graphs and
unification equations (Shieber 1986).

The attributegrammar model used hereisamuch simplified variant of either of thesetwo traditional
CFG extensions, with a probabilistic component added to yield the usual notions of sample probability,
likelihood, etc. We will use the terms attribute and feature interchangesbly.

5.2.1 Definitions
The modd can be characterized as follows.

Definition 5.1 A probabilistic attribute grammar (PAG) is a stochastic context-free grammar with the fol-

lowing additional provisions.

a) Each nontermina X € A in a SCFG derivation has an associated finite set a features from a set F.
A feature f € F isafunction that assigns an element from the finite set of feature values V to the
nonterminalsitisdefined on. Following the traditiona precedents mentioned above, we denotethe fact
that feature f on nontermina X hasvaue v by

X.f=vw

b) An extended context-free production specifies the feature val ues attached to the LHS nonterminal in
terms of either constant values or the features of RHS nonterminals. Thus, a production

X yDy®@ vk

can have feature specifications
X.f=vw

forsome f € Fandv € V, or
Xf=vW4

forsomei, 1 < i < k,and g € F. Thelatter specification determinesthat thevaueof X.f iswhatever
thevalue of festure g on Y () is.

¢) Feature equations have associated probabilities, written

P(X.f=v)

1Certain ordering constraints are typically imposed to guarantee that these attribute values can actually be computed effectively and
efficiently.
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or
P(X.f=YW g

All feature specifications for a certain LHS feature X.f are mutually exclusive, i.e, to assign a
LHS feature one chooses probabilistically among al feature values and RHS features. Therefore all
probabilitiesinvolving X. f on the LHS must sum to unity.

Notation Itisimportantinthiscontext to beableto distinguish between anonterminal typeand anonterminal
instance in a derivation (i.e., as node in a parse treg). Attributes and their specifications always refer to
nonterminal instances. However, to simplify the notationwe can rely on the nonterminal names asthey appear
in the context-free production where possi ble without ambiguity. Where thisis not sufficient, superscriptsin
parentheses di stinguish multiple occurrences of the same nonterminal type. Thus,

X — YZY
Xf=vWyg
X.g= Y(Z).y

equates X . f with the x value on thefirst Y node, and X .y with the y value on the second Y node.

The above definition of PAGs already suggests a straightforward derivation model. A derivation
proceeds in two phases: first, a sentence string is generated by the SCFG in the usua top-down fashion;
second, a probabilistic feature assignment takes place bottom-up, by consulting the feature equations and
their probabilities as determined by the SCFG derivation. The features assigned to the root nonterminal are
then by definition the features of the sentence as awhole.

Definition 5.2 Let M = (Ms, Mr) beaPAG, withthe SCFG M s asitsset of context-free productions, and
Mp asthe set of feature equations. Also, z € X* isastringand f = {f; = v;,: = 1,...,n} isaset of
feature-value assignments, where f; € F, v; € V and the f; are pairwise distinct.

a) Letds = (S = v2 = ...v;...z) be aderivation of z in Mg (Definition 4.2). Then a feature
derivation dr based on ds is given by choosing exactly one feature equation from Mg for each LHS
feature X. f, for al expansons X — A making up ds. The derivation dr is said to yield the feature
assignment f if the feature-value pairsin f are a subset of those obtained by propagating values from
RHS nonterminalsto LHS nonterminalsin the obviousway asimplied by the feature equations chosen
indg.

b) The probability of the feature derivation dr given the string derivations ds, P(dr|ds; M), is the
product of the probabilitiesof al equations chosen.

¢) Thefeature probability P(f|ds; M) given astring derivation ds isthesum of all P(dr|dg; Mp) such
that dp yieldsf.
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€) The string-feature probability P(z, f|M) of a string/feature assignment pair (z, f) is

> P(flds; Mp)P(ds|Ms)

where ds ranges over al context-free derivationsyielding z.

Decomposing the stochastic derivation process in thisway makes for a convenient definition of the
associated joint probabilities, but also rules out several of the more interesting uses of attributes. Section 5.5

discusses some alternative, computationally more complex definitions.

522 Anexample

A simple PAG can be easily written for the I language. We consider sentences containingasingle
unary or binary predicate, such as
circle noves
circle is below a square

square touches a circle
triangle covers a square

a
a
a
a
The semantics of these sentences is encoded using the three attributes t r (trgjector), | m(landmark), and
rel (relation) and attribute values that correspond to the ‘meanings of the denoting words: ‘ ci rcl e’

‘square’,‘ bel ow ,*touch’,etc? Thus, the above samplesincluding attributes become

(acircle nmoves, { tr = ‘circle’, rel = ‘nove’ })

(acircle is belowa square, { tr = ‘circle’, Im= ‘square’, rel = ‘below })
(a square touches a circle, { tr = ‘square’, Im= ‘circle’, rel = 'touch })
(a triangle covers a square, { tr = ‘triangle’, Im= *square’, rel = ‘cover’ })

A PAG generating these and similar samples has a standard SCFG backbone with two types of
rules: lexical productionsthat assign semantic constantsto the denoting words, and nontermina productions
that pass these as feature values through to the root node. Since there are no semantic ambiguities in this
language, all feature equations carry probability one (omitted below). The SCFG probabilitiesare aso not
shown since they could be arbitrary depending on the intended distribution.

S --> NP WP

S.tr = NP. f
S.Im= VP. g
S.rel = VP.h
NP --> Det N
NP.f = N f
VP --> Vi
VP.h = Vi.h
--> Vc PP

2Never mind that this notion of meaning is blatantly simplistic and English-centric: the point here isto illustrate the workings of a
PAG.
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VP.g = PP. g
VP.h = PP.h

--> Vt NP

VP.g = NP.f
VP.h = Vt.h
Det --> a
N -->circle
N.f = ‘circle’
--> square
N f = ‘square’
Ve -->1is
Vi --> npves
Vi.h = ‘nove’
--> falls
Vi.h =" ‘fall’

Vt --> touches
Vt.h = ‘“touch’

--> covers
Vt.h = ‘cover’

PP --> P NP
PP.g = NP.f
PP.h = P.h
P --> above
P. h = “above’
--> bel ow
P.h = ‘bel ow

All feature names except for thetop-level ones can be chosen arbitrarily. In particular, thereisno requirement

that the LHS feature names coincide with RHS feature names, athough thisis often convenient to make the

feature equations more readable.

Simple lexical ambiguities can be modeled using feature assignments with non-unit probabilities,

e.g., for the nonsense word squangl e:

N --> squangl e
N. f ‘square’
N. f ‘“triangle’

5.2.3 PAG estimation

[0.5]
[0.5]

Since PAGs are not astandard grammar formalism thereisno standard estimation al gorithmthat sets

the PAG probability parameters given a set of samples and grammar rules. However, an iterative likelihood

maximization scheme based on EM techniques can be applied here as well.

Since our focus here is on merging (i.e., structure learning), rather than parameter estimation

approaches, we will not give the details of thisagorithm here. The basic ideaisto estimate the SCFG part of

the grammar separately, and then, for a given SCFG derivation to compute the co-occurrence of feature values
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on adjacent parsetree nodesinaway similar to the belief propagation a gorithm of Pearl (1988), conditioning
on the top-level feature assignments and those given by the choice of SCFG rules. Once the conditiona
distribution of feature values on adjacent nodes is known, the likelihood is maximized by choosing a feature
equation’s probability to be proportional to the number of times the two features had the same value.

While this scheme is in principle capable of finding full PAGs of the kind shown above starting
from randomly initialized feature probabilities, wefound that it isal so very pronetolocal maximaand highly
dependent on the initial conditions of the parameters. As expected, the problem is observed increasingly in
‘deep’ grammars with many intermediate of features, and hence hidden variables as part of a derivation.

Thus, the problems with the parameter estimation approach to structural learning that were previ-
oudly observed withHMMs (Section 3.6.1) and SCFGs (Pereira& Schabes 1992) seem to show up even more
severely in the PAG formalism. Thisgives further motivation to our investigation of merging-based learning

approaches.

5.3 PAG Merging

Thefollowing sections describe the usual ingredientsnecessary to specify amerging-based learning
algorithm for the PAG formalism. Not surprisingly, we can build on the corresponding components of the
SCFG merging agorithm.

5.3.1 Sampleincorporation

Thefirst step in the learning algorithm is the creation of ad hoc rulesthat allow new samples to be
generated. We use newly created top-level productionsto generate the sample strings as before, but augment
these with feature val ue assignments to generate the observed attribute-value pairs. Thus, a sample

(acircle is belowa square, { tr = ‘circle’, Im= ‘square’, rel = ‘below })

isincorporated by creating productions

S --> Al CRCLE1 | S1 BELOM A2 SQUARE1l (1)

S.tr = ‘circle’ (1)
S.Im= ‘square’ (1)
S.rel = 'bel ow (1)
Al --> a (1)
CIRCLE1 --> circle (1)
IS1L -->is (1)
BELOM --> bel ow (1)
A2 --> a (1)
SQUAREL --> square (1)

We extend our earlier notation to associate counts with both productions and individual feature equations.
Counts on feature equations indicate how often an equation has been used in feature derivations, and can be
used to compute likelihoods, probability estimates, etc. (Section 3.4.3).
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Noticethat thefeatures cannot be attached to thelexical productionscreated, sincethat wouldimply
knowing the semantic contributions of each word. Hence the features are first attached to the sentence as a

whole, corresponding to rote learning of sentence-meaning associations.

5.3.2 Nonterminal merging and chunking

The nontermina merging and chunking operators introduced in Chapter 4 can be applied to PAG
rules with a few modifications. Merging in the CFG part of productions operates as usua, by renaming
nonterminals and possibly merging productions. Feature equations are also affected by renaming nontermi-
nals. Whenever two or more feature eguations become identical as the result of nonterminal merging, their
associated counts are added as usual.

By way of example, suppose the we merge nonterminals N1 and N2, starting with productions

NP --> Det NIL (2)
NP.f = NL.f1 (2)

NP --> Det N2 (2)
NP.f = N2.f2 (2)

The result of merge(N1, N2) = Nis

NP --> Det N (4)
NP.f = N.f1 (2)
NP.f = N.f2 (2)

Noticethat thefeaturenamesf 1 andf 2 are not automatically merged; that will be accomplished by a separate
operator.

Nonterminal chunking operates as before, but may require the creation of new ad hoc features
attached tothe newly created nonterminal in order to preserve any features found on the chunked nonterminals.

Thistoo ismost easily seen by example:

S-->Det NVAN

S.tr = N(1).f (2)
S Im=N2).f (2)
S.rel = V.h

When applying chunk(A N) = NP thef feature must be preserved by creating a corresponding feature on
NP:

S-->NP VNP

S.tr = NP(1).g9 (2)
S.Im=NP(2).9 (2)
S.rel =V.h

NP --> Det N
NP.g = N f (4)
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5.3.3 Featureoperators

Two new operators are necessary to perform generalizations involving feature equations. Feature
merging is the obvious step of merging two feature names, similar to the way nonterminals are merged.
Consider the grammar

S-->Det NVAN
S.tr = N(1).f1
S Im=N2).f2
S.rel = V.h
N-->circle
N.f1 = ‘circle’
--> square
N f2 = *square’

Now featuresf 1, f 2 are merged into asinglefeaturef , denoted by fmerge(f 1, 2) =f .
S-->Det NV AN

S.tr = N(1) . f
S Im=N2).f
S.rel = V.h
N-->circle
N.f = ‘circle’
--> square
N f = ‘square’

Feature equation counts are preserved in this step, and counts are added where equations merge as aresult of
the renaming of features.

The other feature operation, feature attribution, postulates that a certain feature value v assigned
toaLHS nontermina is actually due to a RHS nonterminal X and itsfeature X. f. The operation iswritten
fattrib( X, v) = f.3

Toillustrate, consider rulesasthey could have been created by sampleincorporationand subsegquent
merging of lexica categories.

S --> A CIRCLE | S BELOW A SQUARE

S.tr = ‘circle’
S.Im= ‘square’
S.rel = *bel oW
S --> A SQUARE TOUCHES A TRI ANGLE
S.tr = ‘circle’
S.Im= ‘square’
S.rel = *bel oW
A-->a

CIRCLE --> circle
SQUARE - -> square
triangle --> triangle
IS-->1is

BELOW - - > bel ow
TOUCHES --> touches

3Thefeature f is newly created, but an existing feature of X can effectively be reused by subsequently merging it with £.
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After attributing‘ squar e’ to the new feature SQUARE. f the productionsbecome

S --> ACRCLE | S BELONV A SQUARE

S.tr = ‘circle’
S.Im = SQUARE. f
S.rel = ‘bel oW

S --> A SQUARE TOUCHES A TRI ANGLE
S. tr = SQUARE. f
S.Im= ‘“triangle’
S.rel = 'bel ow
SQUARE - -> square
SQUARE. f = ‘square’

The choice of which feature value to attribute to which nonterminal occurrence on the RHS is
nondeterministic, but heuristics can be used in practice (see below).

5.3.4 Efficient search for feature operations

Combining operators It is convenient to conceptualize the four operators described above as separate
induction steps. However, in practice is more efficient to combine severa of these operators due to their
typical interactions. In the experiments reported bel ow thiswas done so the existing two-level best-first search
strategy could be used, instead of a more extensive search method.

The feature attribution and merging operators, in particular, often produce an improved posterior
probability score in conjunction with certain nonterminal merging operations. Consider therules

NP --> Det N1 [ 0. 5]
NP.f = N1.f1
--> Det N2 [ 0.5]
NP.f = ‘circle’

N1 --> square
N1.f1 = ‘square’
N2 --> circle

Simply applying the syntactic merging operation merge(N1, N2) = Nwouldresult in

NP --> Det N [1.0]
NP.f = N.f [0. 5]
NP.f = ‘circle’ [ 0. 5]
N --> square [0.5]
N1.f = ‘square’
-->circle [0.5]

which cutstheprobability of all samplesusing oneof theseproductionsin half. Alternatively wemight precede
the merging operation by ‘appropriate’ feature operations, namely fattrib(N2, ci r cl e) =f 2, followed by
fmerge(f 1, f 2) =f . Thisgives the grammar

NP --> Det N [1.0]
NP.f = N f [1.0]
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N --> square [0.5]
N1.f = ‘square’ [1.0]

-->circle [0.5]
N1.f = ‘square’ [1.0]

which preserves the likelihood of the origina grammar.

The genera strategy in combining feature operations with syntactic merging steps is to preserve
determinismin thefeature equationswhere possible, under the constraint that all previously generated samples
can still begenerated. The algorithmimplementing this strategy has a striking similarity with standard feature
unification. Thus, we can think of the feature operations in the example (1) as unifying a constant with the
newly created feature f 2, and (2) as unifying the features f 1 and f 2. Unlike standard unification we can
resolve feature val ue conflicts by splitting probabilities.

Feature attribution Although the above method can efficiently find many feature attributions, feature
attributions must still be considered independently as potential search steps. A good heuristic to suggest
promising candidatesis correlation (or mutua information) between occurrences of nonterminalsand feature
valuesin the RHSs of productionsand feature equations, respectively. Specifically, the operationfattrib( X, v)
is considered if nonterminal X and feature value v have close to perfect correlation (or dternatively, large
positive mutud information).

When applying an operator of type fattrib( X, v) one has to deal with the nondeterminism arising
from multiple occurrences of nonterminals X in production RHSs. (Which instance of X should the value v
be attributed to?) A full search of dl aternative attributionswould discover that some yield feature merging
opportunitiesthat preserve the model likelihood, while others do not, and chose the appropriate alternative
on that basis.

When processing samples in incremental mode asimple, but effective approach isto delay (buffer)
processing of those samples which lead to productionsthat give rise to ambiguity in the feature attributions.
Specifically, by first processing sampl es with distinct feature val ues, attributionscan be donedeterministically.
The ambiguitiesin the held-back samples are then implicitly resolved by merging with existing productions.

For example,

S --> ACRCLE | S BELONV A SQUARE

S.tr = ‘circle’
S.Im= ‘square’
S.rel = *bel oW
S --> ACIRCLE | S BELOW A Cl RCLE
S.tr = ‘circle’
S Im= ‘circle’
S.rel = ‘bel oW

The operationsfattrib(Cl RCLE, ci r cl e) isunambiguousfor thefirst production, but not for the second one.
The second productionis therefore set aside, whereas the first one eventually (after several attribution steps)

resultsin
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S --> A CIRCLE | S BELOW A SQUARE
S.tr = CIRCLE. f1
S.Im= SQUARE. f 2
S.rel = *bel oW
CIRCLE --> circle
CIRCLE.f1 = ‘circle’
SQUARE - -> square
SQUARE. f 2 = *'square’

The nonterminal merging operation merge(Cl RCLE, SQUARE) = Nthen triggersthe merging of featuresf 1,
f2.

S-->ANIS BELOWA N
S.tr = N f
S Im= Nf
S.rel = *bel oW
N-->circle
N.f = ‘circle’
--> square
N f = ‘square’

The nonterminal merging step also renders the two origina productions for S identical, and means the
associated feature equations should bereconciled. Tothisend, thetwoinstancesof  ci rcl e’ areimplicitly
attributed to the first and second N. f feature (as part of the combined merging operators discussed in the
previous section).

5.35 PAG Priors

Prior probability distributionsfor PAGs can be constructed using the now familiar techniques. The
probabilitiesfor the features equations (invol ving both fixed values and RHS features) represent multinomial
parameter tuples for each LHS feature, and are accordingly covered by a Dirichlet prior distribution. The
feature equations themselves can be given priors based on description length. Each eguation involving a
constant feature value comes at a code length cost of log|V| bits. Equations with features on the RHS are
encoded using log | Fx | + logk bits, where X isthe RHS nonterminal in question, Fx isthe set of features
attached to nonterminal X throughout the grammar (since only those need to be encoded uniquely), and £ is
the length of production RHS.

Using a description length prior favors feature merging and other operations that achieve more
compact feature specifications by virtue of collapsing feature names and equations. Alternatively, one could
make al| feature specifications a priori equally likely* and rely solely on the prior of the context-free part of
the grammar for a bias for smaller rules. Since feature equations cannot exist independently of context-free
productionsthiswill implicitly also biasthe feature descriptions against complexity. Furthermore, redundant

4This is not strictly possible for a proper prior since the probability mass has to sum to one, so there has to be some sort of decay
or cut-off for large grammars. However, when comparing grammars of limited, roughly equal size we can use a uniform prior as an
approximation.
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feature equationslead to unnecessary splitting of festure probabilities, and are thus already disfavored by the
likelihood component of the posterior probability.

5.4 Experiments

541 [L,examples

Asmentioned in the introduction (Chapter 1), the motivation for the PAG extension to SCFGs came
partly from the Lo miniature language learning task proposed by Feldman et al. (1990). It was therefore
natura to test the formalism on this problem. No description length bias on feature equations was used.

A minima Lq fragment for English and the associated generating grammar was aready presented
asthe example grammar in Section 5.2.2. A version of thisgrammar with 3 nouns, 2 prepositions, and 2 verbs
of each category was used to generate arandom 100-sentence sample. All aternative productionswere given
equal probability. The generated sentences were then processed by incremental best-first search using the
induction operators described above.

The result grammar found is weakly equivalent to the target. This includes accurate feature
attributionsto the varioustermina symbols, aswell as appropriate feature-passing to instantiate the top-level
features. The only structura difference between the two grammars was a flatter phrase structure for the

induced grammar:®

S -->NP Vi
S.tr = NP. f
S.rel =Vi.h

--> NP Vc P NP
S.tr = NP(1).f
S.Im= NP(2).f

--> NP Vt NP
S.tr = NP(1).f
S.Im= NP(2).f
S.rel =Vvt.h

NP --> Det N
NP.f = N.f

Thelexica productionsand feature assignmentsfor N, B, Vi, Vt, Vt, and Det are as in the example grammar.
Asfor thebase SCFG case (discussed in Section 4.5.2), abeam search findsa deeper phrase structure
with a somewhat higher posterior probability:

S --> NP VP
S.tr = NP. f
S.Im=VP. g
S.rel = VP.h
VP --> Vi

5Asusual we renamethe arbitrary nonterminal and feature names generated by the implementation to be close to the target grammar,
to makethe result more intelligible.
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VP.h = Vi.h
--> X NP

VP.g = NP.f

VP.h = X h

X-->WV P

X.h = P.h
--> Wt

X.h =Vt.h

Notice again the non-traditional (Vc P) chunk, which in this case also happens be a good match for the
attribute passing rules. The (Vc P) allows collapsing both the CFG productions and the feature equations of

the VP expansions for copulaand transitive sentences.

5.4.2 Syntactic constraintsimposed by attributes

It is possible to find cases where the unstructured feature assignments supplied as part of the
samples implicitly favor one phrase structure over another, exhibiting a primitive form of semantically
induced syntactic bias. Dueto the simplicity of the PAG formalism these interactions are not as pervasive as
one might think. Also, purely syntactic contingencies tend to interfere and render the semantically preferred
alternative dominant regardless of attributes.

Interestingly, the following example of semantic bias is entirely based on the likelihood (data fit)
component of the posterior probability, so the phenomenon is not dependent on the bias embodied in the prior
distribution.

We start with a set of sample sentences exhibiting three types of sentence phrase structure. (For
brevity, we give one sample sentence for each, but the example would also go through if each structure had
an associated set of samplesinstead.)

a circle touches a square
acircle is below a square
bel ow a square is a circle

Assumethat initia merging and chunking hasresultedin thetraditional NP and PP phrase categories.
The baseline grammar for the example is now as follows; the sampl es corresponding to therules are listed for
convenience.

S-->NP VUV NP (a circle touches a square)
S.tr = NP(1).f
S.rel =VW.g
S.Im= NP(2).f

S-->NP VI PP (a circle is below a square)
S.tr = NP.f
S.rel = PP.g
S.Im= PP. h

S-->PP Vi NP (bel ow a square is a circle)
S.tr = NP.f

S.rel = PP.g
S.Im= PP. h
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Now consider the sequence of stepsnecessary to arrive at thetraditional VP phrase structure. First, two chunks
are replaced independently: chunk(Vt NP) = VP1 and chunk(Vi NP) = VP2, resulting in the grammar

S --> NP VP1 VP1L --> Vt NP
S.tr = NP. f VP1.g = \t.g
S.rel = VPl. g VP1.h = NP.f
S.Im= VPl. h

S --> NP VP2 VP2 --> Vi PP
S.tr = NP.f VP2.g = PP. g
S.rel = VP2. g VP2. h = PP. h

S.Im= VP2. h

A final merging step, merge(VP1, VP2) = VP, givesthe familiar result:

S--> NP VP VP --> Vt NP
S.tr = NP. f VP.g = Vt.g
S.rel = VP. g VP.h = NP. f

S Im= VP. h VP --> Vi PP
VP.g = PP. g
VP.h = PP. h

While this sequence of steps seems straightforward, it is not the only one possible. The following
alternative sequence uses the same types of operatorsand yieldsagrammar that is symmetrical, and therefore
equally preferable on syntactic grounds alone (assuming no other distributional evidence favors one or the
other).

The dternative sequence of steps starts from the baseline grammar by chunking the ‘wrong’
congtituents, namely, chunk(NP Wt ) = XP1 and chunk(PP Vi ) = XP2.

S --> XP1 NP XP1 --> NP
S.tr = XP1. h XP2.g = Vt.g
S.rel = XPl.g XP1.h = NP.f
S.Im= NP.f

S --> XP2 NP VP2 --> PP Vi
S.tr = NP. f XP2.g = PP. g
Srel = X2.g XP2.h = PP.h

S.Im= XP2. h

As before, we can then merge the new two phrase categories, merge(XP1, XP2) = XP. The resulting SCFG
productions have the same number of nonterminas, productions lengths etc. as the original solution, and
should therefore receive the same prior probability, unless a prior is used that explicitly favors certain types
of phrase structures (e.g., right-branching over |eft-branching). However, the feature equations obtained are

quite different, as in this case the specification does not collapse into three equations as before.

S --> XP NP
S.tr = XP.h [0. 5]
S.tr = NP.f [0.5]
S.rel = XP.g
S.Im= NP.f [0. 5]
S.Im= XP.h [0. 5]
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Theresult isthat probabilitieshave to be split (the exact probabilitiesdepend on the sampl e statistics), thereby
lowering the grammar likelihood. Thisaternative syntactic structureistherefore less preferabl e than thefirst,
but only dueto the attached semantic features.

5.5 Limitations and Extensions

ThePAG framework asintroduced in thischapter hasanumber of moreor less obviousshortcomings,
mainly as a result of our desire to keep the probabilistic model simple enough so that various techniques
familiar from earlier models could be used (combinations of multinomials with associated priors, Viterbi
approximations, simple merging operators, etc.) Below we mention the most important limitations and
possible extensions to remedy them.

55.1 More expressivefeature constraints

Derivation probabilities for PAGs were defined with carefully chosen conditional independence
gtipulationsin order to make them computationally tractable.

e The margina probability of the context-free aspect of a derivation, ds = ), P(ds,dr|M), can
be computed independent of the feature part of the grammar, simply by using the standard SCFG
rules. In particular, the feature specifications cannot rul e out a syntactic structure derived with non-zero
probability.

e Thefeaturederivationitself can bewritten asaproduct of conditional probabilities(of the LHS features
given the RHS features). The reason is that the feature dependencies can be put into a consistent total
order.®

The computationa convenienve, however, comes at the price of reduced expressiveness, especially
when compare to the way features are used in traditional non-probabilistic grammars. For example, it rules
out a natura account of agreement phenomena using rel ations among RHS features alone:

S --> NP VP

NP. number = VP. nunber
NP --> Det N

NP. number = N. nunber
VP --> V NO

VP. nunber V. nunber

where nunber isassigned in the lexica productions for both N and V. Although the feature equation in
thefirst productionis highly intuitive, it would effectively require stating a marginal probability for the joint
event of vaue assignments, as opposed to conditiona probabilitiy of onevalue given the other. However, the

6Thereforethe strict bottom-up feature format could be relaxed, e.g., by using the notion of L-attributed feature specifications (Aho
et al. 1986).
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theory of Markov networks (Pearl 1988) tells us that such amarginal probabilities cannot be assigned locally
in aconsistent fashion.

A partia solution to this particular problem is the imposition of a global total ordering among
agreement features, so that the entire system of constraints is again expressible as a product of conditional
probabilities. An ordering based on the linguistic notion of phrase head might accomplish this: al RHS
features could then only depend on RHS features associated with the distinguished head constituent. In any
case, the convenient global bottom-up ordering of feature constraints would have to be given up, and the
probabilities of the dg (string) component of a derivation would no longer be independent of the featural
aspects of the grammar.

Systems of unordered constraints can still be given a probabilistic interpretation using well-known
concepts from statistical physics. Instead of directly defining probabilitiesfor local festure assignments, we
could instead define an energy function that expresses the ‘badness' of an assignment as an arbitrary positive
number. The energy function can be defined by local components, namely asa product of local contributions,
e.g., one for each rule. The above rule would thereby be trandated into a term that gives low energy if and
only if NP. nunber = VP. nunber. The total energy E(x) of a complete feature assignment z is then
used to generate probabilities according to the Boltzmann distribution

o~ E()/T
P(z) = —

where 7 is the normaizing constant (integral over the numerator), and 7" is a parameter (the temperature)
that controlsthe * peakedness of the distribution.”

This formulation is elegant and intuitively appealing (although it obviates the traditional concept
of derivation). However, it carries aheavy computationa price: Simply obtaining the probability of agiven
string/feature assignment pair for various aternative grammars generally requires stochastic simulations
in order to compute the constant 7. The posterior probabilities of models can aso be evaluated using
Monte-Carlo techniques (Neal 1993), but the approach seems too inefficient for the generate-and-test search
strategies we have explored so far. On the other hand, the formulation also suggests investigating other
learning paradigms, such as stochasti c optimization viasimulated annealing and Boltzmann machinelearning
(Geman & Geman 1984; Hinton & Sejnowski 1986).

55.2 Hierarchical features

In Chapter 4 we saw that the merging agorithm is quite capable of inducing recursive syntactic
rules. However, inthe PAG formalism thereisno matching recursive structurein thefeature descriptions: itis
congtrained to ‘flat’ feature structures. Asaresult, even the Lo semantics of sentences with simple embedded

relative clauses

acircle is belowa square which is to the left of a triangle which ...

A T = o all configurationsare equally probable, regardless of their energy, whereasat T' = 0 all probability mass is concentrate
on the lowest energy configuration.
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cannot be adequately described, let alone learned.®

Theobvioussolutiontothisrepresentational problemarehierarchical featurestructures(f-structures)
as used by a number of linguistic theories of grammar (Shieber 1986). However, this raises new problems
concerning the ‘ proper’ probabilistic formulation. For example, the set of hierarchical feature specifications
over afinite set of feature names becomes infinite, raising the question of an appropriate prior distribution
over this space. Also, new and more varied merging operators would have to be introduced to match the
increased expressiveness of the formalism, leading to new intricaciesfor the search procedure. Still, pursuing
such an extension, maybe not in the full generality of standard f-structures, is aworthwhile subject for future
research.

5.5.3 Trade-offsbetween context-free and feature descriptions

Returning to theissue of generalized feature constraints, thereisal so afundamental question onwhat
evidence such ‘hidden’ feature constraints could be learned. We have seen in Section 4.5.2 that agreement,
for example, can be represented and learned based on posterior probabilities and merging operators, but it
became clear that context-free productions are an inadeguate formalism for these phenomena. Idesally, one
would want to move from adescription such as

S --> NP_sg VP_sg
--> NP_pl VP_pl

to

S-->NP VW
NP. nunber = VP. nunber

In generdl, there are other cases where context-free rules and features provide alternative model s for the same
distributional facts. In such cases a description length criterion should be used to decide which is the better
formulation.

Incidentally, nonterminals themselves may be expressed as features (Gazdar et al. 1985; Shieber
1986), thereby eliminating the need for separate descriptionsmechanisms. This could bethebasis of aunified

description length metric that allows fair comparisons of alternative modeling solutions.

5.6 Summary

In this chapter we examined a minimal extension of stochastic context-free grammars that incor-
porates simple probabilistic attributes (or features). We saw how a pair of feature-oriented operators (feature
merging and attribution) together with the existing SCFG operators can induce simple grammars in this

formalism, and applied the approach to a rudimentary form of semantics found in the L miniature language

8A restricted version in which embedding is restricted to one level and the semantics are flattened out in several features can be
learned using the operators described in this chapter.
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domain. Interestingly, there are cases where even very simple semantics can help disambiguate syntactic
phrase structure during learning, based on purely distributional facts reflected in the model likelihoods, and
although the semantics have no hierarchical structure of their own.

The addition of the new operators has highlighted the need for more complex heuristics (equival ent
to macro operators) in order to efficiently search the space of grammars. We pointed out several severe
limitations of the present formulation, which will require substantial extensionsin order to account for more

interesting linguistic phenomena.
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Chapter 6

Efficient parsing with Stochastic
Context-free Grammars

6.1 Introduction

So far we have discussed stochastic context-free grammar mainly from the point of view of learning.
A much more standard task is the use of a preexisting SCFG for various problemsin computation linguistics
applications requiring probabilistic processing. In the literature, SCFGs are used for the selection of parses
for ambiguousinputs(Fujisaki et al. 1991); to guidethe rule choice efficiently during parsing (Jones & Eisner
19923a); to compute island probahilitiesfor non-linear parsing (Corazza et al. 1991). In speech recognition,
probabilistic context-free grammars play a centrd role in integrating low-level word models with higher-
level language models (Ney 1992), as well as in non-finite state acoustic and phonotactic modeling (Lari
& Young 1991). In some work, context-free grammars are combined with scoring functions that are not
gtrictly probabilistic (Nakagawa 1987), or they are used with context-sensitive and/or semantic probabilities
(Magerman & Marcus 1991; Magerman & Weir 1992; Jones & Eisner 1992a; Briscoe & Carroll 1993).

Althoughclearly not aperfect model of natural language, stochastic context-free grammars (SCFGs)
are superior to non-probabilistic CFGs, with probability theory providingasound theoretical basisfor ranking,
pruning, etc. All of the applications listed above involve (or could potentially make use of) one or more of
the following standard tasks, compiled by Jelinek & Lafferty (1991).1

1. What isthe probability that a given string z is generated by a grammar G?
2. What isthe single most likely parse (or derivation) for z?

3. What is the probability that = occurs as a prefix of some string generated by G' (the prefix probability

of z)?

1Their paper phrases these problem in terms of context-free probabilistic grammars, but they generalize in obvious ways to other
classes of models.
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4. How should the parameters (e.g., rule probabilities) in G be chosen to maximize the probability over a

training set of strings?

The incremental model merging agorithm for SCFGs (Chapter 4) requires either (1) or (2) for
efficient operation. Traditional grammar parameter estimation is essentialy (4), and is typically aso used
as a post-processing step to model merging (after the grammar structure has been learned). The algorithm
described in this chapter can compute solutions to al four of these problemsin a single framework, with a
number of additional advantages over previoudly presented isolated solutions. It was originally developed
solely as a general and efficient tool and accessory to the model merging algorithm. We then realized that it
also solvestask (3) in an efficient and elegant fashion, greatly expanding its useful ness, as described bel ow.

Most probabilistic parsers are based on a generalization of bottom-up chart parsing, such as the
CYK agorithm. Partia parses are assembled just as in non-probabilistic parsing (modulo possible pruning
based on probabilities), while substring probabilities (also known as ‘inside’ probabilities) can be computed
in a straightforward way. Thus, the CYK chart parser underliesthe ‘standard’ solutionsto problems (1) and
(4) (Baker 1979), as well as (2) (Jelinek 1985). Whilethe Jelinek & Lafferty (1991) solution to problem (3)
isnot adirect extension of CYK parsing they nevertheless present their algorithm in terms of its similarities
to the computation of inside probabilities.

In our agorithm, computations for tasks (1) and (3) proceed incrementally, as the parser scans its
input from | eft to right; in particular, prefix probabilitiesare available as soon as the prefix has been seen, and
are updated incrementaly as it is extended. Tasks (2) and (4) require one more (reverse) pass over the parse
table constructed from the input.

Incremental, left-to-right computation of prefix probabilities is particularly important since that
is a necessary condition for using SCFGs as a replacement for finite-state language models in many ap-
plications, such a speech decoding. As pointed out by Jelinek & Lafferty (1991), knowing probabilities
P(zg...x;) for arbitrary prefixes zg. .. z; enables probabilistic prediction of possible follow-words z; 1,
as P(ziy1]zo...2;) = P(zo...z;2,41)/ P(zo. . .2;). These conditional probabilities can then be used as
word transition probabilitiesin a Viterbi-style decoder or to incrementally compute the cost function for a
stack decoder (Bahl et al. 1983).

Another application where prefix probabilities play a centrd role is the extraction of n-gram
probabilities from SCFGs, a problem that is the subject of Chapter 7. Here, too, efficient incremental
computation saves time since the work for common prefix strings can be shared.

The key to most of the features of our algorithmisthat it is based on the top-down parsing method
for non-probabilistic CFGs developed by Earley (1970). Earley’s agorithm is appealing because it runswith
best-known efficiency on a number of special classes of grammars. In particular, Earley parsing is more
efficient than the bottom-up methods in cases where top-down prediction can rule out potentia parses of
substrings.  The worst-case computational expense of the algorithm (either for the complete input, or the
incrementally for each new word) is as good as that of the other known specialized algorithms, but can be

substantially better on well-known grammar classes.
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Earley’s parser (and hence ours) aso deals with any context-free rule format in a seamless way,
without requiring conversions to Chomsky Normal Form (CNF), as is often assumed. Another advantageis
that our probabilistic Earley parser has been extended to take advantage of partially bracketed input, and to
return partial parses on ungrammatical input. The latter extension removes one of the common objections
against top-down, predictive (as opposed to bottom-up) parsing approaches (Magerman & Weir 1992).

6.2 Overview

The remainder of the chapter proceeds as follows. Section 6.3 briefly reviews the workings of an
Earley parser without regard to probabilities. Section 6.4 describes how the parser needs to be extended
to compute sentence and prefix probabilities. Section 6.5 deals with further modifications for solving the
Viterbi and training tasks, for processing partially bracketed inputs, and for finding partial parses. Section 6.7
discusses miscellaneous issues and relates our work to the literature on the subject. In Section 6.8 we
summarize and draw some conclusions.

To get an overal idea of probabilistic Earley parsing it should be sufficient to read Sections 6.3,
6.4.2 and 6.4.4. Section 6.4.5 dealswithacrucial technicality, and later sections mostly fill in details and add
optional features.

We assume the reader is familiar with the basics of context-free grammar theory, such as given in
Aho & Ullman (1972:chapter 2). Jelinek et al. (1992) provide a tutoria introduction covering the standard

algorithmsfor the four tasks mentioned in the introduction.

Notation The input stringis denoted by z. |z| isthe length of z. Individua input symbols are identified
by indices starting at O: xo, z1, ..., z|z|—1. Theinput aphabet is denoted by X. Substringsare identified by
beginning and end positionsz; . ;. Thevariablesi, j, k arereserved for integersreferring to positionsin input
strings. Asin Chapter 4, Latin capital letters X, Y, 7 denote nontermina symbols. Latin lowercase |etters
a,b,...areusedfor terminal symbols. Stringsof mixed nonterminal and termina symbols are written using

lowercase Greek letters A, p, v. The empty string is denoted by .

6.3 Earley Parsing

An Earley parser is essentialy agenerator that buildsleft-most derivations of strings, using agiven
set of context-free productions. The parsing functionality arises because the generator keeps track of all
possible derivations that are consistent with the input string up to a certain point. As more and more of the
input is revealed the set of possible derivations (each of which corresponds to a parse) can either expand as
new choices are introduced, or shrink as a result of resolved ambiguities. In describing the parser it is thus
appropriate and convenient to use generation terminol ogy.

The parser keeps a set of states for each position in the input, describing all pending derivations.?

2Earley states are also known as itemsin LR parsing, see Aho & Ullman (1972:section 5.2) and Section 6.7.3.
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These state sets together form the Earley chart. A stateis of the form
1 X — )\.,u,

where X isanontermina of the grammar, A and . are strings of nonterminals and/or terminals, and i and
k are indicesinto the input string. States are derived from productions in the grammar. The above state is
defined relative to a corresponding production

X = Ap
with the following semantics:

e Thecurrent positionintheinputisi, i.e, zo. . . z;_1 have been processed so far.® The states describing
the parser state at position i are collectively called state set i. Note that thereis one more state set than
input symbols: set 0 describes the parser state before any input is processed, while set || containsthe
states after all input symbols have been processed.

e Nonterminal X was expanded starting at position k£ in the input, i.e. X generates some substring
gtarting at position k.

e The expansion of X proceeded using the production X — Ay, and has expanded the right-hand side
(RHS) Ay up to the position indicated by the dot. The dot thus refers to the current position .

A state with the dot to the right of the entire RHS is called a complete state, since it indicates that
the left-hand side (LHS) nonterminal has been fully expanded.

Our description of Earley parsing omits an optional feature of Earley states, the lookahead string.
Earley’s agorithm alows for an adjustable amount of lookahead during parsing, in order to process LR(k)
grammars deterministically (and obtain the same computational complexity as specidized LR(k) parsers
where possible). The addition of lookahead is orthogonal to our extension to probabilistic grammars, so we
will not includeit here.

The operation of the parser isdefined in terms of three operationsthat consult the current set of states
and the current input symbol, and add new states to the chart. Thisis strongly suggestive of state transitions
in finite-state models of language, parsing, etc. This analogy will be explored further in the probabilistic
formulation later on.

The three types of transitions operate as foll ows.

Prediction For each state
i X =AYy,

whereY isanonterminal anywherein the RHS, and for all rulesY — v expanding Y, add states

1. Y — v

SThisindex isimplicit in Earley (1970). We includeit herefor clarity.
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A state produced by predictioniscalled apredicted state. Each prediction correspondsto apotentia expansion
of anonterminal in aleft-most derivation.

Scanning For each state
1. X — Adapy,

where a isaterminal symbol that matches the current input z;, add the state
i+1: ;X — da.p

(move the dot over the current symbol). A state produced by scanning is called a scanned state. Scanning
ensures that the terminals produced in a derivation match the input string.

Completion For each complete state
7. ]'Y — V.
and each stateinset j (j < 1)
ji X =AYy

that has Y to theright of the dot, add
i 1 X =AY

(move the dot over the current nonterminal). A state produced by completion is called a completed state.
Each completion correspondsto the end of anonterminal expansion started by a matching prediction step.

One crucid insight into the working of Earley’s algorithm is that, although both prediction and
completion feed themsel ves, there are only afinite number of states that can possibly be produced. Therefore
recursive prediction and completion have to terminate eventual ly, and the parser can proceed to the next input
viascanning.

To compl ete the description we need only specify the initia and final states. The parser starts out
with

0: o —.5,

where S is the sentence nontermina (note the empty left-hand side). After processing the last symbol, the
parser verifies that
l: o — 5.

has been produced (among possibly others), where ! isthelength of theinput «. If at any intermediate stage a
state set remains empty (because no states from the previous stage permit scanning) the parse can be aborted
because an impossible prefix has been detected.

States with empty LHS such as those above are useful in other contexts, as will be shown in
Section 6.5.4. We will collectively refer to them as dummy states. Dummy states enter the chart only as a
result of initialization, as opposed to being derived from grammar productions.

4Note the difference between complete and completed states: Complete states (those with the dot to the right of the entire RHS) are
awaysthe result of acompletion step, but completion also produces states which are not yet complete.
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It iseasy to see that Earley parser operations are correct, in the sense that each chain of transitions
(predictions, scanning steps, compl etions) corresponds to a possible (partia) derivation. Intuitively, itisaso
truethat a parser that performs these transitionsexhaustively iscomplete, i.e,, it finds all possiblederivations.
Formal proofs of these properties are given in the literature, e.g., Aho & Ullman (1972). The relationship
between Earley transitionsand derivationswill be stated more formally in the next section.

The parse trees for sentences can be reconstructed from the chart contents. We will illustratethisin
Section 6.5 when discussing Viterbi parses.

Table 6.1 gives an example for Earley parsing, in the form of a trace of transitions as they are
performed by our implementation.

Earley’s parser can deal with any type of context-free rule format, even with null or e-productions,
i.e., those that replace a nontermina with the empty string. Such productions do however require specid
attention, and make the agorithm and its description more complicated than otherwise necessary. In the
following sections we assume that no null productions have to be deat with, and then summarize the
necessary changes in Section 6.4.7. One might chose to simply preprocess the grammar to eiminate null

productions, a process which is also described.

6.4 Probabilistic Earley Parsing

6.4.1 Stochastic context-freegrammars

A stochastic context-free grammar (SCFG) extends the standard context-free formalism by adding
probabilitiesto each production:
X =X [p],

where the rule probability p isusually writtenas P(X — ). Thisnotation to some extent hides the fact that

p is aconditiona probability, of production X — A being chosen, given that X is up for expansion. The

probabilities of al rules with the same nonterminal X on the LHS must therefore sum to unity. Context-

freeness in a probabilistic setting trandates into conditional independence of rule choices. As a result,

compl ete derivationshave joint probabilitiesthat are ssmply the products of the rule probabilitiesinvol ved.
The probabilitiesof interest mentioned in Section 6.1 can now be defined formally.

Definition 6.1 The following quantities are defined relative to a SCFG G, a nontermina X, and astring =
over the al phabet of G.°

a) The probability of a (partial) derivation v1 = v2 = ...y isinductively defined by

1) P(I/]_) =1

2) Pni=...2own)=P(X = )P=>...2>wn),

5This definition is an expanded and generalized version of the one found in Section 4.2.
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@
S — NPVP Det — a
NP — DetN N — circlejsquareltriangle
VP — VTNP VT — touches
VP — VIPP VI — s
PP — PNP P — abovelbelow
(b) |
a circle touches a square
0o — .S scanned scanned scanned scanned scanned
predicted oDet — a 1N — circle. SVT — touches. 3;Det — a 4N — triangle.
0S — .NPVP  completed completed completed compl eted compl eted
oNP— DetN (NP — Det.N oNP — Det N. VP — VT.NP 3NP — Det.N 4NP — Det N.
oDet — .a predicted 0S— NP.VP predicted predicted 3VP — VT NP.
1N — .circle predicted NP — .Det N sN — .circle oS — NPVP.
1N — square  ,VP— VTNP 3Det — .a 4N — square ¢ — S.
1N — .triangle VP — .VI PP 4N — _triangle
>VT — .touches
VI — .is
State set 0 1 2 3 4 5

Table 6.1: Example of non-probabilistic Earley-parsing.

(a) Example grammar for atiny fragment of English. (b) Earley parser processing the sentence
acircletouchesatriangle.
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where vy, vp, . . ., v are string of terminals and/or nonterminals, X — A isproduction of GG, and v; is
derived from v1 by replacing one occurrence of X with A.

b) The string probability P(X = z) (of z given X) is the sum of the probabilities of all left-most
derivations X = ... = x producing = from X.°

) The sentence probability P(S = ) (of z given G) isthe string probability given the start symbol S of
G'. By definition, thisis a so the probability P(z|G') assigned to « by the grammar G.

d) The prefix probability P(S =, z) (of = given G) isthe sum of the probabilitiesof al sentence strings
having x as a prefix,
P(SSpx) = Z P(S = zy)
yeX*

(Inparticular, P(S =, ¢) = 1).

In the following, we assume that the probabilitiesin a SCFG are proper and consistent as defined
in Booth & Thompson (1973), and that the grammar contains no useless nonterminals (ones that can never
appear in a derivation). These restrictions ensure that al nonterminals define probability measures over
strings, i.e,, P(X = z) isa proper distribution over z for all X. Forma definitions of these conditionsare
given in Section 6.4.8.

6.4.2 Earley pathsand their probabilities

In order to define the probabilitiesassociated with parser operation on a SCFG, we need the concept
of apath, or partial derivation, executed by the Earley parser.

Definition 6.2 @ An (unconstrained) Earley path, or smply path, is a sequence of Earley states linked
by prediction, scanning, or completion. For the purpose of thisdefinition, we allow scanning to operate
in‘generation mode, i.e, al states with terminals to the right of the dot can be scanned, not just those
matching theinput. (For completed states, the predecessor stateis defined to be the compl ete statefrom

the same state set contributing to the completion.)

b) A path is said to be constrained by (or generate) a string z if in al scanned states the terminals
immediately to the left of the dot, in sequence, form the string z.

c) A pathiscompleteif the last state on it matches the first, except that the dot has moved to the end of
the RHS.

d) We say that a path starts with nonterminal X if the first state on it is a predicted state with X on the
LHS.

61n aleft-most derivation each step replacesthe nonterminal furthest to the left in the partially expandedstring. Theorder of expansion
is actualy irrelevant for this definition, due to the multiplicative combination of production probabilities. We restrict summation to
left-most derivationsto avoid counting duplicates, and because left-most derivationswill play an important role later.
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€) Thelength of apathis defined as the number of scanned states on it.

Note that the definition of path length is somewhat counter-intuitive, but is motivated by the fact
that only scanned states correspond directly to input symbols. Thus, the length of a path is always the same
as the length of the input string it generates.

A constrained path contains a sequence of states from state set 0 derived by repeated prediction
(starting with the initial state), followed by a single state from set 1 produced by scanning the first symbol,
followed by a sequence of states produced by compl etion, followed by asequence of predicted states, followed
by a state scanning the second symbol, and so on. The significance of Earley pathsisthat they arein aone-to-
one correspondence with left-most derivations. Thiswill allow us to talk about probabilities of derivations,
stringsand prefixesintermsof theactions performed by Earley’sparser. From now on, wewill use’ derivation’

to imply aleft-most derivation.
Lemma6.l & AnEarley parser generates state
1 X — A,
if and only if thereisa partia derivation
S = 20 k—1XV = B0 k1AM > To. p—1Tk. i1V
deriving aprefix zo_ »,_, of theinput.

b) For each partia derivation from a nonterminal X there is a unique Earley path P starting at X, and
vice-versa, such that the sequence of prediction steps on P corresponds to the productions applied in
the derivation, such that P generates aterminal prefix of the string derived.

(8) is the invariant underlying the correctness and completeness of Earley’s agorithm; it can be
proved by induction on the length of a derivation (Aho & Ullman 1972:Theorem 4.9). (b) is the dightly
stronger statement the mapping between derivations and paths is one-to-one. It followsby verifyingthat in a
left-most derivation each choice for anontermina substitution correspondsto exactly one possible prediction
step, or else (a) would be violated.

Sincewehave established that paths correspond to derivations, it isconvenient to associatederivation
probabilities directly with paths. The uniqueness condition (b) above, which isirrelevant to the correctness

of astandard Earley parser, justifies (probabilistic) counting of pathsin lieu of derivations.

Definition 6.3 The probability P(P) of a path P isthe product of all rule probabilitiesused in the predicted

states occurring on P.

Lemma6.2 @ Forall paths P starting with anonterminal X', P(P) gives the probability of the (partial)

*

derivation represented by P. |In particular, the string probability P(X = z) is the sum of the
probabilitiesof al paths starting with X that are complete and constrained by z.
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b) The sentence probability P(S = z) isthe sum of the probabilities of all complete paths starting with
theinitial state, constrained by z.

€) Theprefix probability P(S =1 z) isthe sum of the probabilitiesof all paths P starting with theinitia
state, constrained by z, that end in a scanned state.

Note that when summing over all paths “starting with the initial state,” summation is actually over
all paths starting with S, by definition of theinitial state g — ..S. (&) followsdirectly from our definitions of
derivation probability, string probability, path probability and the one-to-one correspondence between paths
and derivationsestablished by Lemma6.1. (b) followsfrom (a) by using S asthe start nonterminal. To obtain
the prefix probability in (c), we need to sum the probabilities of al complete derivationsthat generate = as a
prefix. The constrained paths endingin scanned states represent exactly the beginningsof all such derivations.
Since the grammar is assumed to be consistent and without useless nonterminals, all partial derivations can
be completed with probability one. Hence the sum over the constrained incomplete paths is the sought-after
sum over al compl ete derivations generating the prefix.

6.4.3 Forward and inner probabilities

Since string and prefix probabilitiesare the result of summing derivation probabilities, the goal isto
compute these sums efficiently by taking advantage of the Earley control structure. This can be accomplished
by attaching two probabilistic quantities to each Earley state, as follows. The terminology is derived from
analogousor similar quantities commonly used in theliterature on Hidden Markov Models (HMMs) (Rabiner
& Juang 1986) and in Baker (1979).

Definition 6.4 The following definitions are relative to an implied input string z.

a) Theforward probability a;(x X — A.u) isthesum of the probabilitiesof all constrained paths of length
ithatendinstate ;. X — A.pu.

b) Theinner probability v;(x X — A.u) isthe sum of the probabilities of dl paths of length i — £ that
dartinstatek : ;X — Apandendini: ;X — A.u, and generate theinput symbolszy, ... z;_1.

It helps to interpret these quantities in terms of an unconstrained Earley parser that operates as
a generator emitting—rather than recognizing—strings. Instead of tracking all possible derivations, the
generator traces along a single Earley path randomly determined by always choosing among prediction steps
according to the associated rule probabilities. Notice that the scanning and compl etion steps are deterministic
once the rules have been chosen.

Intuitively, the forward probability «; ( X — A.p) isthe probability of an Earley generator produc-
ing the prefix of the input up to position: — 1 while passing through state ;, X — A.pu at positioni. However,
dueto left-recursion in productionsthe same state may appear several times on a path, and each occurrenceis
counted towardsthetota «;. Thus, «; isreally the expected number of occurrences of the given state in state
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set 7. Having said that, we will refer to o Simply as a probability, both for the sake of brevity, and to keep the
ana ogy to the HMM terminology of which thisisageneralization.” Notethat for scanned states, o isaways
a probability, since by definition a scanned state can occur only once along a path.

The inner probabilities, on the other hand, represent the probability of generating a substring of the
input from a given nonterminal, using a particular production. Inner probabilitiesare thus conditional on the
presence of a given nontermina X with expansion starting at position &, unlike the forward probabilities,
which include the generation history starting with the initial state. The inner probabilities as defined here
correspond closaly to the quantitiesof the same namein Baker (1979). The sum of 4 of all stateswith agiven
LHS X isexactly Baker'sinner probability for X.

The following lemma is essentially a restatement of Lemma 6.2 in terms of forward and inner
probabilities. It shows how to obtain the sentence and string probabilitieswe are interested in, provided that
forward and inner probabilities can be computed effectively.

Lemma 6.3 Thefollowingassumes an Earley chart constructed by the parser onaninput string « with |z| = /.

a) Provided that S 51 2o g1 Xvisa possible |left-most derivation of the grammar (for some v), the
probability that a nonterminal X generates the substring z, . . . #;_1 can be computed as the sum

P(X S x4 1) = Z 1i(x X — A)
iR X— A

(sum of inner probabilitiesover all complete stateswith LHS X and start index k).

b) In particular, the string probability P(S = ) can be computed as®

P(S:*>I‘) = 7](0 —>S)
= 011(0 —>S)

) The prefix probability P(S =, z), with |z| = I, can be computed as

P(S :*>L $) = Z Ozz(kX — /\CE]_]_./J)

kX—»)\l‘l_l.N

(sum of forward probabilitiesover al scanned states).

The restriction in (a) that X be preceded by a possible prefix is necessary since the Earley parser
at position i will only pursue derivationsthat are consistent with the input up to positioni. This constitutes
the main distinguishing feature of Earley parsing compared to the strict bottom-up computation used in
the standard inside probability computation (Baker 1979). There, inside probabilities for al positions and

nonterminals are computed, regardless of possible prefixes.

“The same technical complication was noticed by Wright (1990) in the computation of probabilistic LR parser tables. The relation
with non-emitting states.
8The definitions of forward and inner probabilities coincide for the final state.
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6.4.4 Computing forward and inner probabilities

Forward and inner probabilities not only subsume the prefix and string probabilities, they are also
straightforward to compute during a run of Earley’s agorithm. In fact, if it weren’t for left-recursive and
unit productionstheir computation would be trivial. For the purpose of exposition we will therefore ignore
the technical complicationsintroduced by these productions for a moment, and then return to them once the
overal picture has become clear.

During arun of the parser both forward and inner probabilitieswill be attached to each state, and
updated incrementally as new states are created through one of the three types of transition. Both probabilities
are set to unity for theinitial state ¢ — .S. Thisisconsistent with the interpretation that the initial stateis
derived from a dummy production — S for which no alternatives exist.

The parse then proceeds as usual, with the probabilistic computations detailed bel ow. The probabil-
itiesassociated with new stateswill be computed as sums of various combinationsof old probabilities. Asnew
states are generated by prediction, scanning, and completion, certain probabilities have to be accumulated,
corresponding to themultiple pathsleading to astate. That is, if the same stateis generated multipletimes, the
previous probability associated with it has to be incremented by the new contribution just computed. States
and probability contributionscan be generated in any order, as long as the summation for one stateis finished
before its probability enters into the computation of some successor state. Section 6.6.2 suggests a way to

implement thisincremental summation.

Notation A few intuitive abbreviations are used from here on to describe Earley transitions succinctly. (1)
To avoid unwieldy > notation we adopt the following convention. The expression z += y means that z is
computed incrementally as a sum of various y terms, which are computed in some order and accumul ated
to finally yield the value of 2.° (2) Transitions are denoted by =, with predecessor states on the left and
successor states on theright. (3) The forward and inner probabilities of states are notated in brackets after
each state, eg.,

i: X —=AYpu [a9]

isshorthand for &« = a; (s X — A.Y ), v = % (x X — A.Y ).
Prediction (probabilistic)

i: X =AYy [a,9] = i Y —uwv [|a
for dl productionsY — v. The new probabilities can be computed as

o' += aP(Y —v)
Y = PY —v)

Note that only the forward probability is accumul ated; + is not used.

9This notation suggests a simple implementation, being obviously borrowed from the programming language C.
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Rationale. o’ isthe sum of al path probabilitiesleading up to , X — A.Y u, times the probability
of choosing productionY — v. Thevaue«’ isjust aspecia case of the definition.

Scanning (probabilistic)
i: X —Adap [a,y] = i+l ;X —dap [@,9]

for al stateswith termina @ matching input a position i. Then

!
« = «

Y o=y
Rationale. Scanning does not involve any new choices since the terminal was already selected as
part of the production during prediction.°

Completion (probabilistic)

it ;Y —v. [ 4]

] = i X =AYy [&,9]
it kX =AY o] }

Then

o 4= oy (6.2)
Y o+= (6.2)

Notethat o’ is not used.

Rationale. To update the old forward/inner probabilities o and v to o’ and ', respectively, the
probabilities of all paths expanding Y — v have to be factored in. These are exactly the paths summarized
by the inner probability v”.

6.4.5 Copingwithrecursion

The standard Earley al gorithm, together with the probability computationsdescribed inthe previous
section would be sufficient if it weren't for the problem of recursion in the prediction and compl etion steps.

The non-probabilistic Earley agorithm can stop recursing as soon as all predictions/completions
yield states already contained in the current state set. For the computation of probabilities, however, this
would mean truncating the probabilitiesresulting from the repeated summing of contributions.

101 different parsing scenarios the scanning step may well modify probabilities. For example, if the input symbolsthemselves have
attached likelihoods these can be integrated by multiplying them onto « and v when a symbol is scanned. That way it is possible to
perform efficient Earley parsing with integrated joint probability computation directly on weighted lattices of input symbols.
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6.4.5.1 Prediction loops
As an example, consider the following simple | eft-recursive SCFG.

S —a [y
S — Sb [q] y

whereq = 1—p. Non-probabilistically, the prediction loop at position 0 would stop after producing the states

o — .S
oS — .a
oS — .5b
Thiswould leave the forward probabilities at
ag(pS —.a) = p
Ozo(oS—>.Sb) = q y

corresponding to just two out of an infinity of possible paths. The correct forward probabilitiesare obtained
as asum of infinitely many terms, accounting for al possible paths of length 1.

ag(oS — .a) = pHap+ap+...=pl—q) =1
ao(0S —.Sb) = g+ 4+ +... =ql—q) T=pYg

Inthesesums each p correspondsto achoice of thefirst production, each ¢ to achoice of the second production.
If we didn’'t care about finite computation the resulting geometric series could be computed by letting the
prediction loop (and hence the summation) continueindefinitely.

Fortunately, all repested prediction steps, including those due to left-recursion in the productions,
can be collapsed into asingle, modified prediction step, and the corresponding sums computed in closed form.
For this purpose we need a probabilistic version of the well-known parsing concept of aleft corner, whichis
also at the heart of the prefix probability algorithm of Jelinek & Lafferty (1991).

Definition 6.5 The following definitions are relative to agiven SCFG G.

a) Twononterminals X and Y aresaid to bein aleft-corner relation X — 1 Y iff there existsaproduction
for X that hasaRHS starting with Y,
X —=YA

b) The probabilistic |eft-corner relation* P, = Pr(G) is the matrix of probabilities P(X — Y),
defined as the total probability of choosing a productionfor X that has Y as aleft corner:

P(X = Y)= > P(X—=Y))
X—=YXeG

11f aprobabilisticrelation R is replaced by its set-theoretic version R/, i.e., (z,y) € R iff R(z, y) # 0, then the closure operations
used here reduceto their traditional discrete counterparts; hence the choice of terminology.
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c) Thereation X 2. Y isdefined as the reflexive, transitiveclosure of X — V,ie, X = Y iff
X = Y orthereisanontermina Z suchthat X —; Zand Z =, Y.

d) The probabilistic reflexive, transitiveleft-corner relation Ry, = Ry (G) isamatrix of probability sums
R(X =1 Y). Each R(X =1 Y) isdefined as aseries
R(XS,Y) = P(X=Y)
+P(X =L Y)
+Y P(X =L Z1)P(Z1—pY)
7
+ > P(X =L Z1)P(Z1 —p Z2)P(Z2—p Y)

Z1,7Z5
+...

Alternatively, Ry, isdefined by the recurrence relation

*

R(X 3LY)=68(X,Y)+ > P(X =1L 2)R(Z ZLY)

(6 denotes the Kronecker delta, defined as unity if X = Y, and zero otherwise).
The recurrence for Ry, can be conveniently written in matrix notation
Rp =1+ PRy,
from which the closed-form solutionis derived:
Rp=(I—-P) %
An existence proof for R, isgivenin Section 6.4.8. Appendix 6.6.3.1 shows how to speed up the computation
of Ry, by inverting only areduced version of the matrix I — Pr..
The significance of the matrix Ry, for the Earley agorithm is that its elements are the sums of
the probabilities of the potentialy infinitely many prediction paths leading from a state ;. X — A.Zp to a
predicted state ;Y — .v, viaany number of intermediate states.
Ry, can be computed once for each grammar, and used for table-lookup in the following, modified
prediction step.
Prediction (probabilistic, transitive)
i: (X —=AZp [a,y] = i: Y — . [@9]
for al productionsY — v such that R(Z = Y') isnon-zero. Then
o += aR(ZSLY)PY —v) (6.3)
Y = PY —v) (6.4)
Note the new R(Z =1 Y") factor in the updated forward probability, which accounts for the sum

of al path probabilitieslinking Z to Y. For Z = Y this covers the case of a single step of prediction;
R(Y 31 Y) > ldways, since Ry, isdefined as areflexive closure.
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6.4.5.2 Completion loops

Asin prediction, the completion step in the Earley algorithm may imply an infinite summation, and
could lead to an infiniteloop if computed naively. However, only unit productions®? can give rise to cyclic
completions.

The problemis best explained by studying an example. Consider the grammar

S —a I[p]
S =T Iq]
T —S [1 ,

where ¢ = 1 — p. Presented with the input a (the only string the grammar generates), after one cycle of
prediction, the Earley chart containsthe following states.

O:g — .5 a=1, 7:1
0:0S — T a=plg ~v=¢q
0:¢7 — S a=p Y, =1

0:0S — wa a=p =1 ~y=p

The p~1 factors are aresult of theleft-corner sum1+ g+ g2+ ... = (1—¢)~ ",

After scanning .S — .a, completion without truncation would enter an infiniteloop. First o7 — .S
is completed, yielding a complete state o7 — S., which alows ¢S — .7" to be compl eted, leading to another
complete state for S, etc. The non-probabilistic Earley parser can just stop here, but as in prediction, this
would lead to truncated probabilities. The sum of probabilities that needs to be computed to arrive at the
correct result containsinfinitely many terms, onefor each possibleloop throughthe 7" — S production. Each
such loop adds a factor of ¢ to the forward and inner probabilities. The summations for all completed states
turn out as

1:05 — 2. a=1l~y=p

1:o77 — S. a:p_lq(p+PQ+qu+...):p_lq,'y:p—l—pq—i—pqz—i—...:1
1:9 — S a=p+pi+pi?+...=Ly=p+pg+pi®+...=1

1108 — T. a=pqp+pi+pi+..)=p ey =alp+pe+p’+..) =4

The approach taken here to compute exact probabilitiesin cyclic completionsis mostly anal ogous
to that for |eft-recursive predictions. The main difference is that unit productions, rather than left-corners,
form the underlying transitive relation. Before proceeding we can convince ourselves that thisisindeed the

only case we have to worry about.

1250me authors refer to unit productionsas chain productions.
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Lemma6.4 Let
lel — M1 X = k2X2 — X = ... = chc — )‘cXc+l~

be a completion cycle, i.e, k1 = k., X1 = X., A1 = A, Xo = X.41. Then it must be the case that
A1 =A2=...= A. = ¢,i.e, dl productionsinvolved are unit productions X1 — X, ..., X, — X.y1.

Proof. For al completion chains it is true that the start indices of the states are monotonically
increasing, k1 > k2 > ... (astate can only complete an expansion that started at the same or a previous
position). From k1 = k. followsthat k3 = k2 = ... = k.. Becausethe current position (dot) also referstothe
same input index in all states, al nonterminals X1, X, ..., X, have been expanded into the same substring
of theinput between k1 and the current position. By assumption the grammar contains no nonterminals that
generate ¢, thereforewe must have A1 = Ao = ... = A\, = ¢, g.ed.

We now formally define the rel ati on between nonterminal smediated by unit productions, anal ogous
to the left-corner relation.

Definition 6.6 The following definitions are relative to agiven SCFG G.

a) Two nonterminals X and Y are said to be in a unit-production relation X — Y iff there exists a
productionfor X that hasY asitsRHS.

b) The probabilistic unit-productionrelation Py = Py (G) isthe matrix of probabilities P(X — V).

) Therelation X = Y isdefined asthereflexive, transitiveclosureof X — V,ie, X > YViff X =Y
or thereisanontermina Z suchthat X — Z and Z = Y.

d) Theprobabilisticreflexive, transitiveunit-productionrelation Ry = Ry (G) isthematrix of probability
sums R(X = V). Each R(X = Y) isdefined as aseries
RX3Y) = P(X=Y)
+P(X —Y)
+> P(X — Z1)P(Z1 —Y)
Z1
+ > P(X — Z1)P(Z1— Zo)P(Z — Y)

Z1,Z>
+...

= §X,Y)+> P(X = Z)R(Z>Y)

As before, amatrix inversion can compute therelation Ry in closed form:

Ry =(I - Py)™t

13Even with null productions, these would not be used for Earley transitions, see Section 6.4.7.
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The existence of Ry isshown in Section 6.4.8.
The modified completion loop in the probabilistic Earley parser can now use the Ry matrix to
collapse dl unit completionsinto asingle step. Notethat we still have to do iterative compl etion on non-unit

productions.

Completion (probabilistic, transitive)

1"

7]
it kX = AZp e,]

il GY .
2 j¥ — Vv [OZ } — i X _>/\Z# [a/’,yl]

foral Y, Z such that R(Z = Y) isnon-zero, and Y — v isnot aunit production (Jv| > 1). Then

o += ay"'R(ZSY)
7

Y += y'R(ZSY)

6.4.6 An example
Consider the grammar

S — a [p]
S — 55 [q]

where ¢ = 1 — p. Thishighly ambiguous grammar generates strings of any number of a’s, using al possible
binary parse trees over the given number of terminas. The statesinvolved in parsing the string aaa are listed
in Table 6.2, aong with their forward and inner probabilities. The example illustrates how the parser deals
with | eft-recursion and the merging of alternative sub-parses during completion.

Since the grammar has only a single nonterminal, the left-corner matrix Py, has rank 1:

Pr=[q]

Itstransitiveclosureis
Rp=(I-Pp) =" ="

Consequently, the exampl e trace shows that the factor p~! being introduced into the forward probability terms
in anumber of prediction steps.

The sample string can be parsed as either (a(aa)) or ((aa)a), each parse having a probability of
p3¢?. The tota string probability is thus 2p3¢?, the computed o and + values for the final state. The o
values for the scanned states in sets 1, 2 and 3 are the prefix probabilitiesfor a, aa, and aaa, respectively:
P(S=ra)=1,P(S 3L aa) = q, P(S > aaa) = (1+ p)¢°

6.4.7 Null productions

Null productions X — ¢ introduce some complications into the relatively straightforward parser
operation described so far, some of which are due specifically to the probabilistic aspects of parsing. This
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@

(b)

The grammar is depicted in (8). The two columns to the right in (b) list the forward and inner
probabilities, respectively, for each state. In both « and v columns, the - separates old factors
from new ones (as per equations 6.1, 6.2, 6.3). Addition indicates multiple derivations of the

same state.

S — a [p]
S — S5 [q]

a v
State set 0
0 —.S 1 1
predicted
0S — .a 1.plp=1 P
oS — .SS 1plg=pq q
State set 1
scanned
0S — a. p~lp=1 p
compl eted
0S — 5.8 plp=gq q-p=rpq
predicted
1S — .a g tp=gq p
1S — .SS q-p g =p1¢? q
State set 2
scanned
15 — a. q P
compl eted
1S — 8.8 p i p=¢° q-9=rpq
0S — SS. q-p=rpq pq-p=1?q
0S — 5.8 p~Yq g = pg? q-p?q = p°¢?
0o —S. 1-p?q =p?q 1-p%q=p%q
predicted
2S5 — .a (> +pg®) - pp=(1+p)g? P
28— .85 (®+pe®) -prg=(1+p N q
State set 3
scanned
2S —a. (1+p)¢” p
compl eted
2§ — 8.8 (1+p He¥ - p=(1+p)4q® q-p=rpq
1S — SS. 7*-p=pg* pq-p=pq
1S — 5.8 p~ % p?q = pq® q-p?q = p°¢?
oS — SS. pe® - p+q-pPa = 20%¢* p*q® - p+pq-pPq = 2%
0S — 5.8 g 2p%% = 2p°¢° q-2p%* = 2p%
0o —S. 1-2p%% = 2p%? 1-2p%¢ = 2p%?

Table 6.2: Earley chart as constructed during the parse of aaa.

140
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section summarizes the necessary modifications to process null productions correctly, using the previous
description as a baseline. Our treatment of null productions follows the (non-probabilistic) formulation of
Graham et al. (1980), rather than the original onein Earley (1970).

6.4.7.1 Computing e-expansion probabilities

The main problem with null productionsis that they allow multiple prediction-completion cycles
in between the scanning steps (since null productions do not have to be matched against one or more input
symbols). Our strategy will be to collapse al predictionsand completions due to chains of null productions
into the regular prediction and completion steps, not unlike the way recursive predictions/compl etions were
handled in Section 6.4.5.

A prerequisite for this approach is to precompute, for all nonterminals X, the probability that X
expands to the empty string. Note that this is another recursive problem, since X itself may not have anull
production, but expand to some nontermina Y that does.

Computation of P(X = ¢) for al X can be cast as a system of non-linear equations, as follows.
For each X, let ex bean abbreviation for P(X = €). By way of example, if X has productions

X — ¢ [p ]_]
— Y1Y2 [pz]
— Y3Y4Y5 [pg]

The semantics of context-free rules imply that X can only expand to ¢ if all of the RHSs in one of X's
productionsexpands to ¢. Trandating to probabilities, we obtain the equation

ex = p1+ p2ev,€y, + p3evey ey, + . ..

In other words, each production contributes aterm in which the rule probability is multiplied by the product
of the e variables corresponding to the RHS nonterminals, unless the RHS contains aterminal (in which case
the production contributes nothing to e x because it cannot possibly lead to ¢).

The resulting non-linear system can be solved by iterative approximation. Each variable e x is
initialized to P(X — ¢), and then repeatedly updated by substituting in the equation right-hand sides, until
the desired level of accuracy is attained. Convergence is guaranteed since the e x values are monotonically
increasing and bounded above by thetruevalues P(X = ¢) < 1. For grammars without cyclic dependencies
among e-producing nonterminal s this procedure degenerates to simple backward substitution. Obviously the
system has to be solved only once for each grammar.

The probability e x can be seen as the precomputed inner probability of an expansion of X to the
empty string, i.e., it sums the probabilitiesof al Earley pathsthat derive ¢ from X. Thisisthe justification
for the way these probabilities can be used in modified prediction and completion steps, described next.
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6.4.7.2 Prediction with null productions

Prediction is mediated by the left-corner relation. For each X occurring to the right of a dot, we
generate statesfor al Y that are reachable from X by way of the X — Y relation. Thisreachability criterion
hasto be extended inthe presence of null productions. Specifically, if X hasaproductionX — Y3 ...Y;_1Y;A
thenY; isaleft corner of X iff Y1, ..., Y;_; al haveanon-zero probability of expandingto . The contribution
of such a productionto the left-corner probability P(X — Y;) is

i—1
P(X = V1. Y;ieVi\) [ ews
k=1

The old prediction procedure can now be modified in two steps. First, replace the old Py, relation
by the one that takes into account null productions, as sketched above. From the resulting Py, compute the
reflexive transitive closure R, and use it to generate predictions as before,

Second, when predicting aleft corner Y with aproductionY — Y7 ...Y;_1Y; A, add states for all
dot positionsup to thefirst RHS nonterminal that cannot expand to ¢, say from X — .Y .. .Y;_1Y; A through
X —Y1...Y,_1.Y;A. Wewill cal thisprocedure ‘ spontaneous dot shifting.’ It accounts precisely for those
derivationsthat expand the RHS prefix Y7 . .. Y;_; without consuming any of the input symbols.

The forward and inner probabilities of the states thus created are those of the first state X —
Y. Y1V, multiplied by factorsthat account for theimplied e-expansions. Thisfactor isjust the product
[Ti_, ev., where j is the dot position.

6.4.7.3 Completion with null productions

Modification of the completion step follows a similar pattern.  First, the unit-production re-
lation has to be extended to allow for unit-production chains due to null productions. A rule X —
Yi...Y;_1Y;Yi4q .. Y; can effectively act like a unit production that links X and Y; if @l other nonter-
minals on the RHS can expand to ¢. Its contribution to the unit production relation P(X — Y;) will then
be

P(X = Y1...Y;iqViVi . V) [[ ewa
k#i
From the resulting revised Py matrix we compute the closure Ry asusual.

The second modification is another instance of spontaneous dot shifting. When completing a state
X — A Ypand movingthedottoget X — AY.u, additional states have to be added, obtained by moving the
dot further over any nonterminalsin p that have non-zero e-expansion probability. Asin prediction, forward
and inner probabilitiesare multiplied by the corresponding e-expansion probabilities.

6.4.7.4 Eliminatingnull productions

Given these added complications one might consider simply eliminating al e-productionsin a
preprocessing step. This is mostly straightforward and analogous to the corresponding procedure for non-
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probabilistic CFGs (Aho & Ullman 1972:Algorithm 2.10). The main difference is the updating of rule
probabilities, for which the e-expansion probabilities are again needed.

1. Deletedll null productions, except on the start symbol (in case the grammar as awhol e produces ¢ with

non-zero probability). Scale the remaining production probabilitiesto sum to unity.
2. For each original rule X — \Y y that containsanontermina ¥ suchthat Y = e

(8) Cresteavariantrule X — Ay

(b) Set therule probability of thenew ruleto ey P(X — AY ). If therule X — Ap already exists,

sum the probabilities.

(c) Decrement the old rule probability by the same amount.

Iterate these steps for al occurrences of a null-able nonterminal in a RHS.

Thecrucial step inthisprocedure isthe addition of variants of the original productionsthat simulate
the null productions by del eting the corresponding nonterminalsfrom the RHS. The spontaneous dot shifting
described in the previous sections effectively performs the same operation on the fly as the rules are used in

prediction and completion.

6.4.8 Existenceof R; and Ry

In Section 6.4.5 we defined the probabilistic |eft-corner and unit-production matrices Ry, and Ry,
respectively, to collapse recursions in the prediction and completion steps. 1t was shown how these matrices
could be obtained as the result of matrix inversions. In this appendix we give a proof that the existence of
these inverses is assured if the grammar is well-defined in the following three senses. The terminology used
here istaken from Booth & Thompson (1973).

Definition 6.7 For a SCFG G over an aphabet X, with start symbol S, we say that'4

a) G isproper iff for al nonterminals X therule probabilitiessum to unity, i.e,

Y Px—-xn=1

M(X=A)EG

b) G isconsistentiff it defines a probability distribution over finitestrings, i.e.,

Y P(SSa)=1

TEX*

where P(S = =) isinduced by the rule probabilities according to Definition 6.1(a).

MUnfortunately, the terminology used in the literature is not uniform. For example, Jelinek & Lafferty (1991) use the term * proper’
to mean (c), and ‘well-defined’ for (b). They also state mistakenly that (a) and (c) together are a sufficient condition for (b). Booth
& Thompson (1973) show that one can write a SCFG that satisfies (a) and (c) but generates derivations that do not terminate with
probability 1, and give necessary and sufficient conditionsfor (b).
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€) G has no useless nonterminalsiff all nonterminals X appear in at least one derivation of some string
x € ¥* with non-zero probability,i.e, P(S = AXpu = z) > 0.

It is useful to trandate consistency into ‘process-oriented’ terms. We can view an SCFG as a
stochastic string-rewriting process, inwhich each step consists of simultaneously replacing all nonterminalsin
asentential form with the right-hand sides of productions, randomly drawn according to therule probahilities.
Booth & Thompson (1973) show that thegrammar isconsistent if and only if the probability D,, that stochastic
rewriting of the start symbol S’ leaves nonterminals remaining after n steps, goesto 0 as n — oo. More
loosely speaking, rewriting S has to terminate after a finite number of steps with probability 1, or else the
grammar isinconsistent.

We observe that the same property holds not only for S, but for al nonterminals, if the grammar
has no useless terminals. If any nonterminal X admitted infinite derivations with non-zero probability, then
S itself would have such derivations, since by assumption X isreachable from S with non-zero probability.

To prove the existence of R, and Ry, it is sufficient to show that the corresponding geometric

series converge:

Ry = I4+P +P+..=(1-pP) !
Ry = I+Pr+Pi+...=(I-Py)?

Lemma6.5 If G isaproper, consistent SCFG without usel ess nonterminal sthe powers P;* of the left-corner
relation, and Py} of the unit-production relation converge to zero asn — co.

Proof. Entry (X,Y) in the left-corner matrix Py, is the probability of generating ¥ as the imme-
diately succeeding left-corner below X. Similarly, entry (X,Y") in the nth power P} is the probability of
generating Y as theleft-corner of X withn — 1 intermediate nonterminals. Certainly P;*(X,Y") isbounded
above by the probability that the entire derivation starting at X terminates after n steps, since a derivation
couldn’t terminate without expanding the left-most symbol to a terminal (as opposed to a nonterminal). But
that probability tendsto O asn — oo, and hence so must each entry in P7.

For the unit-production matrix Py asimilar argument applies, since the length of aderivationisat
least as long as it takes to terminate any initial unit-production chain.

Lemma6.6 If G isaproper, consistent SCFG without useless nonterminals the series for Ry and Ry as
defined above converge to finite, non-negative val ues.

Proof. P} converging to O impliesthat the magnitude of Py,’slargest eigenval ue (itsspectral radius)
is< 1, whichinturnimpliesthat the series Y ;- ) Pi converges (similarly for Py).

The elements of R;, and Ry are non-negative since they are the result of adding and multiplying
among the non-negative e ements of Py, and Py, respectively.

Interestingly, a SCFG may be inconsistent and <till have converging left-corner and/or unit-
production matrices, i.e., consistency isastronger constraint. For example

S — a [l
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S5 — 55 [d

isinconsistent for any choiceof ¢ > % but the | eft-corner rel ation (asinglenumber in thiscase) iswell-defined
foral ¢ < 1, namely (1 — ¢)~1 = p~L. Informally speaking, in these cases the | ft fringe of a derivationis
guaranteed to result in atermina after finitely many steps, but in theremainder of the derivation nonterminals
are generated at afaster rate than are they are replaced by terminals.

SCFG consistency will again play an important rolein Chapter 7 where the computation of various
global quantities such as n-gram expectation, derivation entropy, etc., for a given SCFG will be discussed.

6.4.9 Complexity issues

Theprobabilistic extension of Earley’sparser preservestheoriginal control structurein most aspects,
the major exception being the collapsing of cyclic predictions and unit completions, which can only make
these steps more efficient.  We can therefore apply the complexity analysis from Earley (1970) essentially
unchanged. Below we repeat the highlights, together with proof outlines. We also anayze the dependence
on the size of the grammar, and compare the result with the other known agorithmsfor SCFGs.

The key factor in upper-bounding both time and space complexity in Earley’s agorithm is the
maximal number of states created in each state set, for each input position. An Earley state combines a
production, a dot position, and a start index. Productions and dot positions combine to give a number that
equals the sum of the lengths of all productions, which is roughly the total ‘size’ of the grammar. For fully
parameterized CNF grammars the number of dotted rulesis O(n?), where n isthe number of nonterminals.
(A fully parameterized CNF grammar isoneinwhich each triple of nonterminals X, Y, Z formsaproduction
X — Y Z of non-zero probability.) In both cases the start index contributes a factor of at most /, the length
of theinput.

6.4.9.1 Scalingwith input length

To determine the complexity in terms of [ we note that during prediction and scanning, each state
is processed exactly once, performing operations that depend only on the size of the grammar, not /; both
therefore take O(!). During completion, the worst case is obtained if each of the O(!) statesis the result of
completing predecessors (with dot positionsfurther left) from all possible previous positions. The total time
taken hereisthus O(/2). The completion step thus dominates the computation time, and gives O(/) total run
time over the entire string.

Earley (1970) identifies several important classes of context-free grammars on which the algorithm
runs faster without special modifications. Grammars with no or bounded ambiguity result in completionsthat
have to combine at most a fixed number of previous states (combining compl etions correspond to coal escing
multiple parses for substrings). Such a completion step therefore takes time O(!), to give atotal of O((?).
CFGs that can be processed deterministically, i.e., where the correct choice of rule can be determined using
only the history of the parser and a bounded lookahead into the input, such as LR(k) grammars, result in an
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Earley chart that contains only a fixed maximum number of states per position. (To realize the benefit of
deterministic parsing one generally needs the lookahead feature of Earley’s origina version, not discussed
here.) Prediction, scanning and completion al take constant time (in terms of /) in this case, so the overall
time complexity islinear.

If our parser isto be used for on-line computation of prefix probabilitiesit is critical to know the
incremental time complexity for the processing of the next input symbol (or word). From the analysis above
we get aworst case incremental time of O(/2), O(1) for bounded ambiguity grammars, and constant time for
deterministic grammars. Since!l in thiscase actually refersto thelength of the prefix, incremental processing
isgenerally slowed down as more of the input isincorporated in the chart.

The space complexity in terms of / is O(I?) since | state sets of O(l) elements each have to be
Created.

All in al, we get the same time O(/3), space O(/?) bounds as in the Inside/Outside (Baker 1979)
and LRI (Jelinek & Lafferty 1991) algorithms, with the advantage of better resultson known grammar classes.

6.4.9.2 Scalingwith grammar size

We will not try to give a precise characterization in the case of sparse grammars (Section 6.6.3
gives some hints on how to implement the algorithm efficiently for such grammars). However, for fully
parameterized grammars in CNF we can verify the scaling of our agorithm in terms of the number of
nonterminals n, and compare it to the 1/0 and LRI agorithms, which both run in time O(n3).

As already mentioned, the number of states per position is O(In®) for a CNF grammar. During
prediction, summation of forward probabilities (equation 6.3) can be implemented efficiently as follows. We
first compute the sum of al «'s referring to a given nonterminal X right of the dot, for all X. This can be
donein asingle pass over the current state set, i.e., intime O(In?). The result isa vector of «-sums, indexed
by nonterminals. Multiplying this vector with the matrix R, we get another vector (in time O(n?)). The o
from equation (6.3) are obtained by multiplying the rule probability P(Y — v) withtheY” element in that
vector (tota timefor this step O(n)).

Scanning involves shifting the dot in the O(In) states that represent terminal productions. During
completion we again have to update probabilities for O(In3) states, each of which is the result of summing
over O(!) predecessors. (Notethat there can be no cyclic completionswith CNF grammars.) To implement
summations (6.1) and (6.2) efficiently we first sum the inner probabilitiesy’" from all statesthat refer to the
same LHS nonterminal in asingle O(n?) pass.

Finally, the matrix inversion to compute the | eft-corner and unit-productionrelation matrices isalso
accomplished in O(n®) time. However, that cost can be amortized over al subsequent uses of the parser.

The space requirements of all algorithms discussed here are proportional to the number of parame-
ters, i.e, O(n3).

Overall, we get the same O(n?) dependence on the number of nonterminalsas for the 1/O and LRI

algorithm.
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6.4.10 Summary

To summarize, the modified, probabilistic Earley agorithm works by executing the following steps

for each input position.

e Apply asingle prediction step to al incomplete statesin the current state set. All transitive predictions
are subsumed by consulting the left-corner matrix Rr.
Forward probabilitiesare computed by multiplying old «’s with rule probabilities. Inner probabilities
areinitialized to their respective rule probabilities.

e A singlescanning step appliedto all stateswith terminasto theright of thedot yield theinitial elements
for the next state set. If the next set remains empty (no scanned states) the parse is aborted.
Forward and inner probabilitiesremain unchanged by scanning.
The sum of all forward probabilitiesof successfully scanned states gives the current prefix probability.

o Apply iterative completion (highest start index first, breadth-first) to all states, except those correspond-
ing to unit productions. Unit production cycles are subsumed by consulting the matrix Ry .

Forward and inner probabilitiesare updated by multiplying old forward and inner probabilitieswith the

inner probabilities of completed expansions.
The praobabilities that nonterminals X generate particular substrings of the input can be computed as

sums of inner probabilitiesy(; X — A.)

After processing the entire string in thisway, the sentence probability can be read off of either the
« or v of thefinal state.

6.5 Extensions

This section discusses extensions to the Earley algorithm that go beyond simple parsing and the
computation of prefix and string probabilities. Theseextensionareall quitestraightforward and well-supported
by the original Earley chart structure, which leads us to view them as part of a single, unified algorithm for
solving the tasks mentioned in the introduction.

6.5.1 Viterbi parses

Definition 6.8 A Viterbi parsefor astring z, in agrammar G, isaleft-most derivation that assigns maximal

probability to 2z, among all possible derivationsfor z.

Both the definition of Viterbi parse, and its computation are straightforward generalizations of the
corresponding notion for Hidden Markov Models (Rabiner & Juang 1986), where one computes the Viterbi
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path (state sequence) through an HMM. Precisely the same approach can be used in the Earley parser, using
the fact that each derivation correspondsto a path.

Path probabilities are recursively multiplied during completion steps using the inner probabilities
as accumulators. Summation of probabilities occurs whenever aternative sub-parses lead to a single state.
The computation of the Viterbi parse has two parts:

e During the forward pass each state must keep track of the maximal path probability leading to it, as
well as the predecessor states associated with that maximum probability path.

e Oncethefina state is reached, the maximum probability parse can be recovered by tracing back the
path of ‘best’ predecessor states.

The following modificationsto the probabilistic Earley parser will implement the forward phase of
the Viterbi computation.

e Each state computes an additional probability, its Viterbi probability v.

o Viterbi probabilitiesare propagatedin thesame way asinner probabilities, except that duringcompletion
the summation isreplaced by maximization: v;(; X — AY.u) isthemaximum of dl productsv; (; Y —
v.)v; (x X — A.Y ) that contributeto thecompleted state , X — AY.u. The same-position predecessor
;Y — v. associated with the maximum is recorded as the Viterbi path predecessor of ;. X — AY.u (the
other predecessor state , X — A.Y i can be inferred).

e The completion step uses the origina recursion without collapsing of unit production loops. Loops
are smply avoided, since they can only lower a path’s probability. Collapsing of unit-production
compl etions has to be avoided to maintain a continuous chain of predecessors for later backtracing and
parse construction.

e The prediction step does not need to be modified for the Viterbi computation.

Once thefina stateisreached, arecursive procedure can recover the parse tree associated with the
Viterbi parse. This proceduretakes an Earley statei : ; X — A.p asinput and producesthe Viterbi parse for
the substring between & and ¢ as output. (If the input state is not complete (1« # ¢), theresult will be a partial
parse tree with children missing from the root node.)

Viterbi-parse (i : 1 X — A.p)
1. If A = ¢, return aparse tree with root labeled X and no children.

2. Otherwisg, if A endsinatermina a, let A'a = A, and call thisprocedure recursively to obtain the parse
tree
T = Viterbi-parse(i — 1: 1 X — X .ap)

Adjoinaleaf nodelabeled a asthe right-most child to the root or 7" and return 7.
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3. Otherwise, if A endsinanontermina Y, let 'Y = A. Find the Viterbi predecessor state ;Y — v. for

the current state. Call this procedure recursively to compute
T = Viterbi-parsg(j : x X — X.Ypu)

aswell as
T' = Viterbi-parse(i : ;Y — v.)

AdjoinT" to T as theright-most child at theroot, and return7'.

6.5.2 Ruleprobability estimation

TheruleprobabilitiesinaSCFG canbeiteratively estimated using the EM (Expectati on-M aximization)
algorithm (Dempster et al. 1977). The estimation procedure finds a set of parameters that represent a local
maximum of the grammar likelihood function P(D|G), given a sample corpus D. The grammar likelihood

is given by the product of the string probabilities,

P(DIG) =[] P(SS>2) ,
zeD
i.e., the samples are assumed to be distributed identically and independently.
The two steps of thisalgorithm can be briefly characterized as follows.

E-step: Compute expectations for how often each grammar ruleis used, given the corpus D and the current

grammar parameters (rule probabilities).

M-step: Reset the parameters so as to maximize the likelihood rel ative to the expected rule countsfound in
the E-step.

Thisprocedureisiterated until the parameter values (as well as thelikelihood) converge. It can be shown that
each round in the algorithm produces alikelihood that is aleast ahigh as the previousone; the EM algorithm
istherefore guaranteed to find at least alocal maximum of the likelihood function.

EM isageneralization of thewell-known Baum-Welch algorithmfor HMM estimation (Baum et al.
1970); the original formulation for the case of SCFGsis dueto Baker (1979). For SCFGs, the E-step involves
computing the expected number of times each production is applied in generating the training corpus. After
that, the M-step consists of asimplenormalization of these countsto yield the new production probabilities.*

In this section we examine the computation of production count expectations required for the E-step.
The crucia notion introduced by Baker (1979) for this purposeisthe ‘ outer probability’ of a nonterminal, or
the joint probability that the nonterminal is generated with a given prefix and suffix of terminals. Essentially
the same method can be used in the Earley framework, after extending the definition of outer probabilitiesto

apply to arbitrary Earley states.

15 Alternatively, a maximum posterior estimate may be generated by combining the expected rule countswith a Dirichlet or other prior
on the production probabilities, as discussed in Section 2.5.5.1.
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Definition 6.9 Given astring z, |z| = {, theouter probability 3;(x X — A.u) of an Earley state isthe sum of
the probabilitiesof al paths that

e start with theinitia state,

generate the prefix zg. . . 2 _1,

pass through , X — .vpu, for somev,
e generatethe suffix x; ... x;_; startingwith state ; X — v.pu,

end in thefina state.

Outer probabilities complement inner probabilities in that they refer to precisely to those parts
of complete paths generating = not covered by the corresponding inner probability v;(s X — A.u). A
potentially confusing aspect of thisdefinition is that the choice of the production X — Ay isnot part of the
outer probability associated with astate ; X — A.u. Infact, the definition makes no reference to thefirst part
A of the RHS: all states sharing the same k£, X and p will have identical g;.

Intuitively, 3;(x X — A.u) isthe probability that an Earley parser operating as a string generator
yields the prefix ¢ . x—1 and the suffix z; ;_1, while passing through state , X — A.p a position ¢ (which
isindependent of A). Aswas the case for forward probabilities, 3 is actualy an expectation of the number
of such states in set ¢, as unit production cycles can lead to paths that have more than one state fitting this
description. Again, we ignore this technicality in our terminology. The term is motivated by the fact that 3
reduces to the ‘ outer probability’ of X as defined in Baker (1979) if thedot isinfina position.

6.5.2.1 Computing expected production counts

Before going into the details of computing outer probabilities we briefly describe their use in
obtai ning the expected rule counts needed for the E-step in grammar estimation.

Let ¢(X — Alz) denote the expected number of uses of production X — A in the derivation of
string z. Alternatively, (X — A|z) isthe expected number of timesthat X — A isused for predictionin a
complete Earley path generating z. Let ¢(X — A|P) be the number of occurrences of predicted states with
production X — A dong apath P.

(X — Alz)

> P(PIS S x)e(X — AP)
P derives x
1 x
. > P(P,SSx)e(X — A|P)
P derives x

P(S =)
1 * *

_— P(S= 2y ;1 Xv=2

P(S=x) i:,;.)\ ( )

*

Summation isover al predicted statesusing X — A. P(S = zo_;_1Xv = z) isthe sum of the probabilities
of al paths passing through i : ; X — .A. Inner and outer probabilities have been defined such that this
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expected count is obtained precisely as the product of the corresponding of v; and 3;. Thus, the expected
usage count for arule can be computed as

! Z /)’Z(ZX — ./\)’yi(iX — .)\)

P(S = z) i X — A

The sum can be computed after compl eting both forward and backward passes (or during the backward pass
itself) by scanning the chart for predicted states.

(X = Az) =

6.5.2.2 Computing outer probabilities

The outer probabilities are computed by tracing the complete paths from the final state to the start
dtate, in a single backward pass over the Earley chart. Only completion and scanning steps need to be traced
back. Reverse scanning leaves outer probabilities unchanged (similar to inner and forward probabilitiesin
the forward pass), so the only operation of concern is reverse completion.

We describe reverse transitions using the same notation as for their forward counterparts, except

that each state iswritten with its outer and inner probabilities.
Rever se completion

it Y = 87,97

it X =AY [B] =
Jji e X = AYp [F9]

for all pairsof states ;Y — v. and ;. X — A.Y p inthechart. Then

/3/ 4= 7//[))
B 4= '8

Theinner probability + is not used.

Rationale. Relativeto 5/, # is missing the probability of expanding Y, which isfilled in from v,
The probahility of the surrounding of Y isthe probability of the surrounding of X, plusthe choice of therule
of production for X and the expansion of the partial LHS ), which are together given by +”.

Note that the computation makes use of the inner probabilities computed in the forward pass. The
particular way in which~ and 3 were defined turnsout to be convenient here, as no reference to the production
probabilities themsel ves needs to be made in the computation.

Asin theforward pass, simple (reverse) completion would not terminate in the presence of cyclic
unit productions. A version that collapses al such chains of productionsis given bel ow.

Rever se completion (transitive)

i ;Y —wv [87,79]

it WX =AM B =
Ji kX = AZp [B,Y]
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for dl pairsof states ;Y — v. and ;. X — A.Zp inthechart, such that the unit-productionrelation R(Z 3Y)
isnon-zero. Then

ﬂl 4= P}/”ﬁ
p' 4= YBR(Z=Y)

The first summation is carried out once for each state j : ;X — A.Zpu, whereas the second summation is
applied for each choice of 7, but only if X — A7y isnot aunit production.

Rationale. Thisincrements 3" the equivalent of R(Z = Y') times, accounting for the infinity of
surroundingsin which Y can occur if it can be derived through cyclic productions. Note that the computation

of @ is unchanged, since 4" aready includes an infinity of cyclicaly generated subtrees for Y, where
appropriate.

6.5.3 Parsing bracketed inputs

The estimation proceduredescribed above (and EM-based estimatorsin general) are only guaranteed
to find locally optimal parameter estimates. Unfortunately, it seems that in the case of unconstrained SCFG
estimation local maxima present a very real problem, and make success dependent on chance and initial
conditions (Lari & Young 1990). Pereira & Schabes (1992) showed that partially bracketed input samples
can aleviate the problem in certain cases. The bracketing information constrainsthe parse of theinputs, and
thereforethe parameter estimates, steering it clear from some of the suboptimal solutionsthat could otherwise
be found.

A second advantage of bracketed inputs is that they potentialy allow more efficient processing,
since the space of potential derivations (or equivaently, Earley paths) isreduced. It istherefore interesting to
see how any given parser can incorporate partial bracketing information. Thisistypically not abig problem,
but in the case of Earley’s agorithm thereis a particularly smple and elegant sol ution.

Consider again the grammar

S — a [p]
S — 85 [q]

A partialy bracketed input for this grammar would be a(aa)a. The parentheses indicate phrase boundaries
that any candidate parse hasto be consistent with, e.g., there cannot be a parse that has a constituent spanning
the first and second a, or the third and fourth. The supplied bracketing can be nested, of course, and need not
be complete, i.e., within a bracketing there are till potentially several ways of parsing a substring.

The Earley parser can dedl efficiently with partial bracketing information as follows. A partialy
bracketed input is processed as usual, left-to-right. When a bracketed portion is encountered, the parser

invokesitself recursively on the substring delimited by the pair of parentheses encountered. More precisely:

e Therecursive parser instance gets to see only the substring as input.
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e Its chart is digoint from the one used by the parent instance. It cannot use states from the parent
chart, except those explicitly passed to it (see below). Conversely, when finished, the parent has access
only to those states returned explicitly by the child instance.*® (The first restriction prevents parsing of
congtituentsthat cross the left phrase boundary, while the second restriction prevents aviolation of the
right phrase boundary.)

e The chart of the child is initialized with al incomplete states from the parent’s state set at the start
position of the substring.

e Thechildreturnsto the parent al (and only) the complete states from itslast state set. The parent adds
the returned states to the state set at the position immediately following the end of the substring, using

it astheinput for its own completion procedure.

e Thus the recursive parser invocation and the following completion step replaces the usual prediction-
scanning-completion cycle for the entire bracketed substring. After the child returns, the parent

continues processing regular input symbols, or other bracketed substrings.

e Needless to say, the child parser instance may itself call on recursive instances to deal with nested
bracketings.

Thisrecursion schemeisefficient inthat it never explicitly rej ects a parse that would be inconsistent
with the bracketing. Instead it only considers those parses that are consistent with the bracketing, while
continuing to make use of top-down information like a standard Earley parser.

Processing bracketed strings requires no modification to the computation of probabilities. Proba-
bilitiesare passed between parent and child as part of states, and processed as before. The recursive control
structure simply constrains the set of Earley paths considered by the parser, thereby affecting the probabil-
ities indirectly. For example, ambiguous strings may end up with lower inner probabilities because some
derivations are inconsi stent with the bracketing.

Only the forward pass is directly affected by the bracketing. Both the Viterbi procedure (Sec-
tion 6.5.1) and the reverse compl etion pass (Section 6.5.2) only examine the states already in the chart. They
are therefore automatically constrained by the bracketing.

Complexity To assess the complexity benefit of bracketing we can extend the analysis of Section 6.4.9,
making use of the recursive structure of the algorithm.

In the standard parsing scheme, the time complexity is O(/%) for an input of length /. Hence, in
the recursive scheme each bracketed substring takestime O(r3), where r isthe number of constituentsin the
substring (which may be either input symbols or nested constituents). The total number of bracketingsin a
giveninput stringis O({). If R isan upper bound on r the total timeistherefore O(IR3).

16This does not preclude using a shared chart at the implementation level, of course, aslong as the aboveprotocol is adhered to.
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In a fully bracketed input string each grammar rule used in the derivation is reflected in a corre-
sponding bracketing. Hence, r is bounded by the maximal production length of the grammar, and the time

complexity issimply O(!).

6.5.4 Robust parsing

In many applications ungrammatical input has to be dealt with in some way. Traditionally it was
seen as a drawback of top-down parsing algorithms such as Earley’s that they sacrifice ‘robustness; i.e, the
ability to find partial parses in an ungrammatical input, for the efficiency gained from top-down prediction
(Magerman & Weir 1992).

One approach to the problem isto build robustnessinto the grammar itself. Inthe simplest case one
could add top-level productions

S — XS

where X can expand to any nonterminal, including an ‘ unknownword’ category. Thisgrammar will cause the
Earley parser to find all partial parses of substrings, effectively behaving like a bottom-up parser constructing
the chart in left-to-right fashion. More refined variations are possible: the top-level productions could be
used to model which phrasal categories (sentence fragments) can likely follow each other. This probabilistic
information can then be used in a pruning version of the Earley parser (Section 6.7.2) to effect a compromise
between robust and expectation-driven parsing.

An alternative method for making Earley parsing more robust isto modify the parser itself so asto
accept arbitrary input and find all or a chosen subset of possible substring parses. Below we present such a
simple extension to Earley’s a gorithm (probabilistic or not). In the probahilistic version, it will also produce
the likelihoodsof those partial parses. The potential advantage over the grammar modifying approach isthat
it can be modified to make use of various criteriafor which partia parsesto alow at runtime.

The extension for robust parsing does not require any changesto the way the Earley parser operates
onthechart, only that the chart be‘ seeded’ with some extra states before starting. The computation performed
as a result of this modification will be essentially equivaent to that of a CYK bottom-up parser, but with the
advantage that a single parsing engine can be used for both standard and robust parsing.

6.5.4.1 Seedingthechart

In standard Earley parsing the parser expects to find exactly one instance of an .S nonterminal
generating the entire input. This expectation is reflected by the fact that the chart is initiaized with the
dummy start state

O:g —.5



CHAPTER 6. EFFICIENT PARSING WITH STOCHASTIC CONTEXT-FREE GRAMMARS 155

For robust parsing, we want to identify all nonterminalsthat can possibly generate any substring of theinput.
This can be accomplished by a so placing dummy states

kg —.X

for all positions k and nonterminals X, in the Earley chart prior to the start of normal operation. (In practice,
dummy states need to be added only for those nonterminals X whose expansion can start with the current
input symbol. Thistechniqueisdiscussed in Section 6.6.3.2.)

The immediate effect of these extra states is that more predictions will be generated, from which
more completionsfollow, etc. After finishing the processing of the jth state set, the chart will contain states

iy — X

indicating that nontermina X generates the substring . j_1.

Table 6.3(a) illustrates the robust parsing process using the example grammar from Table 6.1
(p. 128).

Probabilities in the extra states are handled as follows. The initid dummy states , — .X are
initialized with aforward probability of zero. Thiswill ensure that the forward probabilitiesof all extra states
remain at zero and don't interfere with the computation of prefix probabilitiesfrom the regular Earley states.

Inner probabilitieson dummy statesareinitializedto unity just asfor the S start state, and processed
in the usual way. The inner probabilitiesfor the each substring/nonterminal pair can then be read off of the
complete dummy states.

Viterbi probabilities and Viterbi back-pointers can also be processed unchanged. Applying the
Viterbi-parse procedure from Section 6.5.1 to the complete dummy states yields Viterbi parses for all

substring/nonterminal pairs.

6.5.4.2 Assembling partial parses

Instead of consulting the chart for individual substring/nonterminal pairsit may be useful to obtain
alist of all complete partia parses of theinput. A complete partial parseis a sequence of nonterminals that
together generate the input. For example, using the grammar in Table 6.1, the input a circle touches above
a sguare has the complete partial parses ‘NP VT PP and ‘Det N VT P NP, among others. The input is
grammatical exactly if .S isamong the complete partial parses.

First note that there may not exist a complete partial parse if the input contains unknown symbols.
As a preprocessing step, or on-line during parsing, one may have to create new preterminals to account for
such new input symbols.

The Earley algorithm can be minimally extended to also generate thelist of al partial parses. What
is needed is some device that assembles abutting nonterminals from partial parses left-to-right. This work
can be carried out as a by-product of the normal completion process using the concept of avariable state. A
variable state isa special kind of dummy state in which the RHS can have any number of nonterminalsto the
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@
STATE SET 0
0 -->
predicted ...
0S -->
0 NP >
STATE SET 1
scanned "a" .
0 DET -->
conpleted ...
0 -->
MAX O DET -->
0 NP >
predicted ...
STATE SET 2
scanned "circle"
1N -->
conpleted ...
0 -->
1 -->
MAX O NP o>
1N -->
0S -->
predicted ...
2 VP o>
2 VP o>
STATE SET 3
scanned "touches"
2 VT -->
conpleted ...
2 -->
MAX 2 VT -->
2 VP >
predicted ...
3 PP -->
(b)
STATE SET 0
0 -->
STATE SET 1
0 -->
STATE SET 2
0 -->
0 -->
STATE SET 3
0 -->
0 -->

. NP VP
.DET N

DET .

DET . N

circle .

NP .
N .
DET N .
circle .
NP . VP

.VI PP

. VT NP
touches .
VT .
touches .

VT . NP

.P NP

NP . ?
DET N .?

NP VT .?
DET N VT .?

STATE SET 4
scanned "bel ow'
3P
conpleted ...
3
MAX 3 P
3 PP
predicted ...
4 S
4 NP
STATE SET 5
scanned "a"

4 DET

conpleted ...
4

MAX 4 DET

4 NP
predicted ...
STATE SET 6

scanned "square"

5N
conpleted ...

MAX 3 PP

PO WPAPW

nzz
o

STATE SET 4

STATE SET 5

o o

STATE SET 6

[eNoNoNoNeNo]

>
>
>

>
>

>
>
>

-->

>
>
>
>
>
>
>

>
>

>
>

>
>
>
>
>
>

bel ow .

bel ow .
P .NP

. NP VP
.DET N

square .

PP .
NP .

P NP .

N .

DET N .
square .
NP . VP

NP VT P DET N .?
DET N VT P DET N .?

Table 6.3: Robust parsing using the simple grammar from Table 6.1.

(8) State sets generated from parsing the ungrammatical string a circle touches above a square.
Dummy states (those with empty LHS) represent partial parses. States representing ‘ maximal’
partial parses are marked with MAX. Predictionsthat don’t |ead to compl etions have been omitted
to save space. (b) Trace of variable state completionsresultingin alist of complete partial parses
for thisinput.
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[eft of the dot, and a variableto the right of the dot, written as a question mark:
1k — A.?

As usual, such a state means that the nonterminalsin A have generated the substring =, ;1. The variable
indicates that any continuation of the nonterminal sequence is allowed.

The variable semantics are taken into account during prediction and completion. A variable state
generates predictions for al nonterminals, thus having the same effect as the nonterminal-specific dummy
states in the previous section. During completion, a variable state combines with all complete states to yield

new variable states:

il ;Y — . .
= 1. L — AY.?

fordl Y. (That is, the complete nontermina Y isinserted before the dot and the variabl e retained following
the dot to allow further completions.) Thisisimplemented by atrivial modification to the standard completion
step. Inner probabilities, Viterbi probabilitiesand Viterbi back-pointers are processed as usual.

Thenet effect of processing variable statesisthat all complete partial parses can beread off thefinal
state set in the chart as the right-hand sides of variable states (after discarding the variable itself). The inner
probability of a variable state reflects the combined likelihood of the partial parse for the given input. The
Viterbi probability of a variable state isthe joint maximum achieved by the most likely parses for each of the
substrings. Different derivations from the same complete partial parse may split the input string at different
places. The Viterbi-par se procedure when applied to a variable state will recover the most likely such split.

Table 6.3(b) shows a trace of variable state completions used in enumerating the partial parses for
the example given earlier.

The total number of complete partial parses can be exponentia in the length of the input. It may
therefore be desirable to compute only a subset of them, applying some application-specific filter criterion.
One such criterion is that one is only interested in ‘maximal’ complete partial parses. A complete partial
parseiscaled maximal if it has no subsequence of nonterminalsthat can be replaced by another nonterminal
so asto yield another complete partia parse. For example, in the case of a circle touches above a square, the
only maximal parseis'NPVT PP

It turns out that afilter for maximal partial parses is easy to implement in the Earley framework.
Maximal parses contain only nonterminals that are not themselves part of a larger partial parse. Therefore,
during completion, we can mark all states that contributed to a larger constituent, and later identify the
unmarked states as the ones corresponding to maximal parses. (The chart in Table 6.3(a) has al maxima
states|abel ed with MAX.) When compl eting variabl e states we simply skip all compl etionsdueto non-maximal
states. The list of complete partial parses obtained from the chart will then contain precisely the maximal

ones.
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6.6 Implementation Issues

This section briefly discusses some of the experience gained from implementing the probabilistic
Earley parser. Implementationismainly straightforward and many of the standard techniquesfor context-free
grammars can be used (Graham et al. 1980). However, some aspects are unique due to the addition of
probabilities.

6.6.1 Prediction

Due to the collapsing of transitive predictions, this step can be implemented in a very efficient and
straightforward manner. As explained in Section 6.4.5, one has to perform a single pass over the current
dtate set, identifying al nonterminals Z occurring to the right of dots, and add states corresponding to all
productionsY — v that arereachablethrough theleft-corner relation 7 =, Y. Asindicated in equation (6.3),
contributions to the forward probabilities of new states have to be summed when several paths lead to the
same state. However, the summation in equation (6.3) can be mostly eiminated if the o values for al old
states with the same nonterminal 7 are summed first, and then multipliedby R(Z =1 Y). These quantities
are then summed over all nonterminals Z, and the result is once multiplied by the rule probability P(Y — v)
to give the forward probability for the predicted state.

6.6.2 Completion

Unlike prediction, the completion step still involves iteration. Each complete state derived by
completion can potentially feed other completions. An important detail here is that to ensure that all
contributions to a stat€'s o« and 4 are summed before proceeding with using that state as input to further
compl etion steps.

One approach to this problem isto insert compl ete states into a prioritized queue. The queue orders
states by their start indices, highest first. Thisis because states corresponding to later expansion always have
to be completed first before they can lead to the completion of earlier expansions. For each start index, the
entries are managed as a first-in-first-out queue, ensuring that the directed dependency graph formed by the
states istraversed in breadth-first order.

A completion pass can now be implemented as follows. Initialy, al complete states from the
previous scanning step are inserted in the queue. States are then removed from the front of the queue, and
used to complete other states. Among the new states thus produced, complete ones are again added to the
gueue. Theprocessiteratesuntil no more states remain in the queue. Because the computation of probabilities
already includes chains of unit productions, states derived from such productions need not be queued, which
also ensures that the iteration terminates.

A similar queuing scheme, withthestart index order reversed, can be used for thereverse completion
step needed in the computation of outer probabilities(Section 6.5.2).
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6.6.3 Efficient parsing with large sparse grammars

During work with a moderate-sized, application-specific natural language grammar taken from the
BeRP system (Jurafsky et al. 1994b) we had opportunity to optimize our implementation of the algorithm.
Below we relate some of the lessons learned in the process.

6.6.3.1 Speeding up matrix inversions

Both prediction and compl etion steps make use of amatrix R defined as a geometric series derived

from amatrix P,

R=I+P+P+...=(I-P)*!
Both P and R are indexed by the nonterminalsin the grammar. The matrix P isderived from the SCFG rules
and probabilities (either the left-corner relation or the unit-production rel ation).

For an application using a fixed grammar the time taken by the precomputation of left-corner and
unit-productionmatrices may not be crucial, sinceit occurs off-line. There are cases, however, when that cost
should be minimal, e.g., when rule probabilitiesare iteratively reestimated.

Even if the matrix P is sparse, the matrix inversion can be prohibitive for large numbers of
nonterminals n. Empirically, matrices of rank n with a bounded number p of non-zero entriesin each row
(i.e., p isindependent of n) can be inverted in time O(n?), whereas a full matrix of sizen x n would require
time O(n3).

In many cases the grammar has a relatively small number of nonterminals that have productions
involving other nonterminals in a left-corner (or the RHS of a unit-production). Only those nonterminals
can have non-zero contributionsto the higher powers of the matrix P. Thisfact can be used to substantially
reduce the cost of the matrix inversion needed to compute R.

Let P’ be asubset of the entries of P, namely, only those elements indexed by nonterminals that
have anon-empty row in P. For example, for theleft-corner computation, P’ isobtained from P by deleting
all rows and columns indexed by nonterminals that do not have productions starting with nonterminals. Let
I' betheidentity matrix over the same set of nonterminalsas P’. Then R can be computed as

R = I+(I+P+P?+..)P
= I+(I'+P +P?+..)xP
= I4+(I'-P)ytxpP
= I+RxP
Here R’ isthe inverse of I’ — P’, and x denotes a matrix multiplication in which the left operand is first
augmented with zero el ements to match the dimensions of the right operand, P.
The speedups obtai ned with thistechnique can be substantial. For agrammar with 789 nonterminals,

of which only 132 have nonterminal productions, theleft-corner matrix was computed in 12 seconds (including
the final multiply with P and addition of 7). Inversion of the full matrix 7 — P took 4 minutes 28 seconds.*’

17These figures are not very meaningful for their absolute values. All measurements were obtained on a Sun SPARCstation 2 with a
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6.6.3.2 Efficient prediction

As discussed in Section 6.4.9, the worst-case run-time on fully parameterized CNF grammars is
dominated by the compl etion step. However, thisisnot necessarily true of sparse grammars. Our experiments
showed that the computation is dominated by the generation of Earley states during the prediction steps.

It istherefore worthwhile to minimize the total number of predicted states generated by the parser.
Since predicted states only affect the derivation if they lead to subsequent scanning we can use the next input
symbol to constrain the relevant predictions. To thisend, we compute the extended | eft-corner relation Rrr,
indicating which terminals can appear as |eft corners of which nonterminals. Ry, isaBoolean matrix with
rows indexed by nonterminals and columnsindexed by terminals. It can be computed as the product

Rir = RiPrr

where Py hasanon-zero entry at 4, j iff thereisa production for nonterminal i that starts with terminals j.
Ry istheold left-corner rlation.

During the prediction step we can ignore incoming states whose RHS nonterminal following the
dot cannot have the current input as aleft-corner, and then eliminate from the remaining predictionsal those
whose LHS cannot produce the current input as aleft-corner. Thesefiltering stepsare very fast asthey involve
only table lookup.

On atest corpusthistechnique cut the number of generated predictionsto almost 1/4 and speeded up
parsing by afactor of 3.3. The corpus consisted of 1143 sentence with an average length of 4.65 words. The
top-down prediction alone generated 991781 states and parsed at arate of 590 millisecondsper sentence. With
bottom-up filtered prediction only 262287 states were generated, resulting in 180 milliseconds per sentence.

A trivia optimization often found in Earley parsersisto precompute the entirefirst prediction step,
asit doesn’t depend on theinput and may eliminate asubstantial portion of thetotal predictions per sentence.®
We found that with bottom-up filtering thistechniquelost itsedge: scanning the precomputed predicted states
turned out to be slower than computing the zeroth state set filtered by the first input.

6.7 Discussion

6.7.1 Rdationtofinite-statemodels

Throughout the exposition of the Earley algorithm and its probabilistic extension we have been
alluding, in conceptsand terminol ogy, to thea gorithmsused with probabilisticfinite-statemodel s, in particul ar
Hidden Markov Models (Rabiner & Juang 1986). Many concepts carry over, if suitably generalized, most
notably that of forward probahilities. Prefix probabilities can be computed from forward probabilitiesby the
Earley parser just as in HMMs because Earley states summarize past history in much the same way as the

dtates in afinite-state model. There are important differences, however. The number of statesin an HMM

CommonLisp/CLOS implementation of generic sparse matrices that was not particularly optimized for this task.
18Thefirst prediction step accounted for roughly 30% of all predictions on our test corpus.
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remains fixed, whereas the number of possible Earley states grows linearly with the length of the input (due
to the start index).

Incidentally, the HMM concept of backward probabilitieshas no useful analog in Earley parsing.
It is tempting to define j; (s) as the conditional probability that the generator produces the remaining string
giventhat it iscurrently in state s. Alas, thiswould be an ill-defined quantity since the generation of a suffix
depends (via completion) on more than just the current state.

The solution found by Baker (1979), adopted here in modified form, is to use outer probabilities
instead of ' backward’ probabilities. Outer probabilitiesfollow the hierarchical structureof aderivation, rather
than the sequential structure imposed by |eft-to-right processing. Fortunately, outer probability computation
isjust as well supported by the Earley chart as forward and inner probabilities.*®

6.7.2 Onlinepruning

Infinite-state parsing (especially speech decoding) one often makes use of the forward probabilities
for pruning partial parses before having seen the entireinput. Pruning isformally straightforward in Earley
parsers. in each state set, rank states according to their « values, then remove those states with small
probabilitiescompared to the current best candidate, or simply those whose rank exceed a given limit. Notice
thiswill not only omit certain parses, but will also underestimate the forward and inner probabilities of the
derivationsthat remain. Pruning procedures have to be evaluated empirically since they invariably sacrifice
completeness and, in the case of the Viterbi algorithm, optimality of the result.

While Earley-based on-line pruning awaits further study, there is reason to believe the Earley
framework has inherent advantages over strategies based only on bottom-up information (including so-called
‘over-the-top’ parsers). Context-free forward probabilities include all available probabilistic information
(subject to assumptions implicit in the SCFG formalism) available from an input prefix, whereas the usua
inside probabilities do not take in account the nontermina prior probabilities that result from the top-down
relation to the start state. Using top-down constraints does not necessarily mean sacrificing robustness, as
discussed in Section 6.5.4. On the contrary, by using Earley-style parsing with a set of carefully designed and
estimated ‘fault tolerant’ top-level productions, it should be possible to use probabilitiesto better advantage
in robust parsing. This approach is a subject of ongoing work in the tight-coupling framework of the BeRP
system (Jurafsky et al. 1994b:see bel ow).

6.7.3 Relation to probabilistic LR parsing

Oneof themajor aternative context-free parsing paradigmsbesidesEarley’ salgorithmisLR parsing
(Aho & Ullman 1972). A comparison of the two approaches, both in their probabilistic and non-probabilistic
aspects, is interesting and provides useful insights. The following remarks assume familiarity with both
approaches. We sketch the fundamental relations, as well as the the important tradeoffs between the two

19The closest thing to aHMM backward probability is probably the suffix probability P(.S 2r z).



CHAPTER 6. EFFICIENT PARSING WITH STOCHASTIC CONTEXT-FREE GRAMMARS 162

frameworks.?°

Like an Earley parser, LR parsing uses dotted productions, or items, to keep track of the progress
of derivationsas theinput is processed. (The start indices are not part of LR items: we may therefore use the
term itemto refer to both LR items and Earley states without start indices.) An Earley parser constructs sets
of possible items on the fly, by following all possible partial derivations. An LR parser, on the other hand,
has access to a complete list of sets of possible items computed beforehand, and at runtime simply follows
transitions between these sets. The item sets are known as the ‘states of the LR parser.?l A grammar is
suitable for LR parsing if these transitions can be performed deterministically by considering only the next
input and the contents of a shift-reduce stack. Generalized LR parsing is an extension that allows parallel
tracking of multiple state transitionsand stack actions by using a graph-structured stack (Tomita 1986).

Probabilistic LR parsing (Wright 1990) is based on LR items augmented with certain conditional
probabilities. Specificaly, the probability p associated with an LR item X — A.p is, in our terminology, a

normalized forward probability:
a; (X — A.p)

a P(S 31 x0.i 1)

where the denominator is the probability of the current prefix.?? LR item probabilities, are thus conditioned

bl

forward probabilities, and can be used to compute conditional probabilitiesof next words. P(z;|zo ;—1) iS
the sum of the p’sof dl items having z; to theright of the dot (extrawork isrequired if theitem corresponds
toa‘reduce dtate, i.e, if thedotisinfinal position).

Notice that the definition of p is independent of i as well as the start index of the corresponding
Earley state. Therefore, to ensure that item probabilities are correct independent of input position, item sets
would have to be constructed so that their probabilities are unique within each set. However, this may be
impossiblegiven that the probabilitiescan take on infinitely many values and in genera depend on the history
of the parse. The solution used by Wright (1990) is to collapse items whose probabilities are within a small
tolerance ¢ and are otherwise identical. The same threshold is used to simplify a number of other technical
problems, eg., left-corner probabilities are computed by iterated prediction, until the resulting changes in
probabilitiesare smaller than . Subject to these approximations, then, a probabilistic LR parser can compute
prefix probabilities by multiplying successive conditional probabilitiesfor the words it sees.?

As an alternative to the computation of LR transition probabilitiesfrom a given SCFG, one might
instead estimate such probabilities directly from traces of parses on atraining corpus. Due to the imprecise
relationship between LR probabilities and SCFG probabilities it is not entirely clear if the mode thus
estimated corresponds to any particular SCFG in the usua sense. However, Briscoe & Carroll (1993) turn

2L ike Earley parsers, LR parsers can be built using various amounts of lookahead to make the operation of the parser (more)
deterministic, and hence more efficient. Only the case of zero-lookahead, LR(0), is considered here; the correspondence between LR(k)
parsers and k-lookahead Earley parsersis discussed in the literature (Earley 1970; Aho & Ullman 1972).

210Once more, it is helpful to compare this to a closely related finite-state concept: the states of the LR parser correspond to sets of
Earley states, similar to the way the states of a deterministic FSA correspond to sets of states of an equivalent non-deterministic FSA
under the standard subset construction.

2The identity of this expression with the item probabilities of Wright (1990) can be proved by induction on the steps performed to
computethe p's, as shown in Appendix 6.9. Unfortunately, Wright presentsthis computation without giving a precise definition of what
these numbersare probabilities of.

2|t is not clear what the numerical properties of this approximation are, e.g., how the errors will accumulate over longer parses.
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this incongruity into an advantage by using the LR parser as a probabilistic model its own right, and show
how LR probabilities can be extended to capture non-context-free contingencies.

The problem of capturing more complex distributional constraints in natural language is clearly
important, but well beyond the scope of this chapter. We simply remark that it should be possible to define
‘interesting’ non-standard probabilitiesinterms of Earley parser actions so asto better model non-context-free
phenomena. Apart from such considerations, the choice between LR methods and Earley parsing isatypical
space-time tradeoff. Even though an Earley parser runswith the same linear time and space complexity as an
LR parser on grammars of the appropriate LR class, the constant factorsinvolved will be much in favor of the
LR parser as amost al the work has already been compiled into itstransition and action table. However, the
size of LR parser tables can be exponential in the size of the grammar (due to the number of potential item
subsets). Furthermore, if the generalized LR method is used for dealing with non-deterministic grammars
(Tomita 1986) the runtime on arbitrary inputs may also grow exponentially.

The bottom line is that each application’s needs have to be evaluated against the pros and cons
of both approaches to find the best solution. From a theoretica point of view, the Earley approach has
the inherent appeal of being the more genera (and exact) solution to the computation of the various SCFG
probabilities.

6.7.4 Other related work

The literature on Earley-based probabilistic parsersis sparse, presumably because of the precedent
set by the Inside/Outside a gorithm, which is more naturally formulated as a bottom-up a gorithm.

Schabes (1991) showsthat Earley’s a gorithm can be augmented with the computation of inner and
outer probabilities, in much the same way as presented here. However, the algorithm presented is not fully
genera as it isrestricted to sentences with bounded ambiguity, i.e., there are no provisions for handling unit
production cycles. Schabesfocuseson grammar estimation (using generalized inside and outsi de probabilities)
and only mentionsthe potential for computing prefix probabilities.

Magerman & Marcus (1991) areinterested primarily in scoring functionsto guide aparser efficiently
to the most promising parses. They use Earley-style top-down prediction only to suggest worthwhile parses,
not to compute precise probabilities.?*

Both Nakagawa (1987) and Paseler (1988) use a non-probabilistic Earley parser augmented with
‘word match’ scoring. Though not truly probabilistic, these algorithms are similar to the Viterbi version
described here, in that they find a parse that optimizes the accumulated matching scores (without regard to
rule probabilities). Prediction and completion loops do not come into play since no precise inner or forward
probabilities are computed.

Dan Jurafsky (personal communication) had written an Earley parser for the Berkeley Restaurant
Project (BeRP) speech understanding system that computed forward probabilities for restricted grammars
(without | eft-corner or unit production recursion). The parser now uses the methods described here to provide

24They argue that precise probabilities are inappropriatein natural language parsing.
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exact SCFG prefix and next-word probabilitiesto atightly-coupled speech decoder (Jurafsky et al. 1994b).

An essentia ideain the probabilisticformulation of Earley’s algorithmisthe collapsing of recursive
predictionsand unit completion chains, replacing them by lookupsin precomputed matrices. Thisideaarises
in our formulation out of the need to compute probability sums given asinfinite series. Graham et al. (1980)
use a non-probabilistic version of the same technique to create a highly optimized Earley-like parser for
general CFGs that implements prediction and compl etion by operations on Bool ean matrices.?®

The matrix inversion method for dealing with left-recursive prediction is borrowed from the LRI
agorithm of Jelinek & Lafferty (1991) for computing prefix probabilitiesfor SCFGsin CNF.?% We then use
that idea a second timeto deal with the similar recursion arising from unit productionsin the compl etion step.
We suspect, but have not proved, that the Earley computation of forward probabilitieswhen applied to a CNF
grammar performs a computation that is in some sense isomorphicto that of the LRI algorithm. In any case,
we believe that the parser-oriented view afforded by the Earley framework makes for amore intuitivesolution
to the prefix probability problem, with the added advantage that it is not restricted to CNF grammars.

Kupiec (1992a) has proposed a version of the Inside/Outside algorithm that alows it to operate
on non-CNF grammars. Interestingly, Kupiec's algorithm is also based on a generaization of finite-state
models, namely, Recursive Transition Networks (RTNs). Probabilistic RTNs are essentially HMMs that
allow nonterminals as output symbols. Also, the dotted productions appearing in Earley states are exactly
equivalent to the statesin an RTN derived from a CFG.

6.7.5 A smpletypology of SCFG algorithms

The various known agorithms for probabilistic CFGs share many similarities, and vary aong
similar dimensions. One such dimension iswhether the quantities entered into the parser chart are defined in
abottom-up (CYK) fashion, or whether |eft-to-right constraints are an inherent part of their definition.?’

Another point of variation is the ‘ sparseness’ trade-off. If we are given a set of nonterminals and
wanted to list all possible CFG rulesinvolvingthose nonterminals, thelist would beinfinitedueto thearbitrary
length of the right-hand sides of productions. Thisisa problem, for example, when training a CFG starting
with compl ete ignorance about the structure of the rules.

A workaround is to restrict the rule format somehow, usualy to CNF, and then list all possible
productions. Algorithms that assume CNF are usualy formulated in terms of such a fully parameterized
grammar wheredl triples X, Y, Z formapossiblerule X — Y Z with non-zero probability, although in many
cases they may be specialized to handle sparse grammars efficiently.

At the other extreme we have al gorithmswith accept unrestricted CFG productionsand aretherefore
meant for sparse grammars, where almost al (in the set theoretic sense) possible productionshave probability

5This connection to the GHR a gorithm was pointed out by Fernando Pereira. Exploration of this link then lead to the extension of
our algorithm to handle e-productions, as described in Section 6.4.7.

%Their method uses the transitive (but not reflexive) closure over the left-corner relation Py, for which they chose the symbol Q 7.
We chose the symbol R, in this chapter to point to this difference.

270f coursea CYK-style parser can operate | eft-to-right, right-to-left, or otherwise by reordering the computation of chart entries.
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Full CNF Sparse CFG
Bottom-up Inside/outside Stochastic RTNs
(Baker 1979) (Kupiec 1992a)
L eft-to-right LRI Probabilistic
(Jelinek & Lafferty 1991) Earley

Table 6.4: Tentative typology of SCFG algorithms according to prevailing directionality and sparseness of
the CFG.

zero. It appears that these agorithmstend to be more naturally formulated in terms of a stochastic process,
as opposed to static specifications of string probabilities.

To illustrate these points, the algorithms discussed in this section have been arranged in the grid
depicted in Table 6.4.

6.8 Summary

We have presented an Earley-based parser for stochastic context-free grammarsthat isappealing for
its combination of advantages over existing methods. Earley’s control structure makesit run with best-known
complexity onanumber of special grammar classes, and no worse than standard bottom-up probabilistic chart
parsers on fully parameterized SCFGs.

Unlikebottom-up parsersit al so computesaccurate prefix probabilitiesincremental ly whilescanning
itsinput, along with the usua substring (inside) probabilities. The chart constructed during parsing supports
both Viterbi parse extraction and Baum-Welch type rule probability estimation by way of a backward pass
over the parser chart. If theinput comes with (partial) bracketing to indicate phrase structure thisinformation
can be easily incorporated to restrict the allowable parses. A simple extension of the Earley chart alows
finding partial parses of ungrammatical input.

The computation of probabilities is conceptually simple, and follows directly Earley’s parsing
framework, while drawing heavily on theanal ogy tofinite-statelanguage models. It doesnot requirerewriting
the grammar into normal form. Thus, the present algorithm fills a gap in the existing array of agorithmsfor
SCFGs, efficiently combining the functionalitiesand advantages of several previous approaches.

6.9 Appendix: LR item probabilities as conditional forward probabili-
ties

In Section 6.7.3 an interpretation of LR item probabilitiesas defined in Wright (1990: Section 2.1)
was given in terms of the forward probabilities used by the Earley parser. Below we give a proof for the
correctness of thisinterpretation. Notice that these are the ‘ideal’ LR probabilitiesthat should be attached to
items, if it weren’t for the identification of itemswith close probabilitiesto keep the LR state list finite.



CHAPTER 6. EFFICIENT PARSING WITH STOCHASTIC CONTEXT-FREE GRAMMARS 166

Let p(X — v) betheprobability for LRitem X — v (withadot somewhereinthe RHS). We want

to show that
a;i (kX — A.p)

P(S 31 %0 i-1)
for any item X — A.p, regardless of position i and start index £. Note that i is not aways equal to the

p(X — Ap) = , (6.5)

position of the last input symbol processed; areduce action of the parser effectively resets i to the beginning
of thereduced nonterminal.

The computation of LR item sets beginswith theinitia item — .S, which has p = 1 by définition,
thereby agreeing with (6.5).

Thefirst operation for constructing item setsisclosure, whereby for eachitem X — A.Y u, al items
Y — .v corresponding to the available productions Y — v are added to the set. This operation is recursive
and corresponds obvioudly to Earley’s prediction step. Also, theway inwhich p values are propagated follows
exactly the way forward probabilities are handled during prediction. (The left-corner relation Ry, could be
used to compute closure probabilitiesexactly, but Wright suggests using atruncated recursion instead.) Since
closure and prediction are thus isomorphic, and since the prefix relative to the items does not change, (6.5)
also remains valid during this step.

Finaly, a successor set I’ of kernd items is constructed from an existing closed set 7 in what
corresponds to Earley’s scanning or completion. Specifically, for each currentitem X — A. Y € I, anitem
X — AMY.pisplaced in I’, reachable by scanning atermina Y or reducing (completing) a nontermina Y.
(Welet Y stand for either terminal or nonterminal to treat both cases jointly.) The new item probability is

computed as
p(X — AY p)

Z p(Z — w.Yp)

Z—7n.Ypel

p(X — AY.u) = (6.6)

This can be understood as scaling the total probability of items matching Y to unity.
By substituting (6.5) into (6.6) we get
ai(X=2Yu)
P(S:*>L£o...l—1)
Z a;(Z7 — w.Yp)
73 per P(S =1 0 i)
a; (X — XY p)
Z a;(7 — w.Yp)
Z—7n.Ypel
i (X — MYy (Y)
Y. aZ—=aYpp(Y)
Z—7n.Ypel

_ ai/(X — /\Y,u) (67)
Z a; (7 — wY.p)
Z—Y.pel’
_ Ozi/(X — /\Y/,L) (68)
P(S S 20 i_1)

p(X — AY.p)
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The position ¢’ is that of the current next input. We have used the abbreviation +;:(Y") for the sum of inner
probabilities pertaining to the completed Y, i.e,,

1 if Y istermind
7i(Y) =

Yoy, (Y —wv) ifYisnonterminal.

Two stepsin thederivation above need justification. In (6.7) we are computing forward probabilities
just as in an Earley completion step (see equation (6.1)). To get (6.8) we observe that the set I’ contains
all possible kerndl items after having processed the prefix z¢. ;-1 (by definition of the LR parsing method).

Hence the sum of «;» represents all possiblepartial derivations generating the prefix, i.e,, P(S . 2o, i'—1)-
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Chapter 7

N-grams from Stochastic Context-free

Grammars

7.1 Introduction

In Chapter 2 we introduced n-gram model s as the one of the simplest, but neverthel ess very popular
types of probabilistic grammars. Particularly the specia cases of bigram and trigram models have proven
extremely useful for such tasks as automated speech recognition, part-of-speech tagging, and word-sense
disambiguation. However, their obvious linguistic deficiencies also cause a number of practical difficulties
in these and other applications. Thelack of linguistically motivated structure entails a large number of freely
adjustable parameters, which is an illustration of the structure-parameter tradeoff discussed in Section 2.4.
Asaresult, very large corporaare needed for reliabl e estimation of n-gram model s, often requiring additional
sophisticated smoothing techniques to avoid the well-known problems of maximum-likelihood estimators
(Church & Gale1991). The lack of linguistic motivation also makes n-gram practically incomprehensible to
humans, and impossible to extend and maintain except by brute-force reestimation.

Whilestochastic context-free grammars (SCFGs) have their own problems, these are to some degree
complementary to those of n-grams. SCFGs have many fewer parameters (so can be reasonably trained with
smaller corpora), and they capture linguistic generalizations, and are easily understood, written and extended
by linguists. For example, if anew word with a number of known possible syntactic categoriesisto be added
itisusually straightforward to do so by adding lexical productionsto the SCFG. The structure of the grammar
then entail s co-occurrence statistics with other words.

This chapter describes a technique for computing an n-gram grammar from an existing SCFG—an
attempt to get the best of both worlds. In Section 7.2 weillustrate the basi ¢ problem to be solved and provide
anumber of motivationsfor itssolution. Section 7.3 describes the mathemati cs underlying the computation,
while Section 7.4 addresses questions of complexity and efficient implementation. Section 7.5 discusses the

issue of when the n-gram distribution derived from a SCFG is well-defined.
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Section 7.6 reports an experiment demonstrating one of the applications of the n-gram-from-SCFG
computation, as well as its practical feasibility. Section 7.7 summarizes the agorithm and some general
points. In Section 7.8 we briefly touch upon miscellaneous problems that have solutions with close formal

tiesto the n-gram agorithm.

7.2 Background and Motivation

As defined in Section 2.2.2, an n-gram grammar is a set of probabilities P(w,, |wiws . . . w,_1),
giving the probability that w,, followsaword string wiw> . . . w, _1, for each possible combination of thew’s
inthevocabulary : of thelanguage. For a5000 word vocabulary, abigram grammar woul d have approximately
5000 x 5000 = 25, 000, 000 free parameters, and atrigram grammar would have a2 125, 000, 000, 000.

Even an example of much smaller scaleillustratesthe problem well. Consider thefollowingsimple
SCFG (rule probabilities given in brackets):

S — NPVP [10]
NP — N [0.4]
NP — DetN [0
VP — V [0.8]
VP — VNP [02
Det — the [0.4]
Det — a [0.6]
N  — book [1.0]
V. — cdos [0.3]
V. — open [0.7]

The language generated by this grammar contains 5 words. Including markers for sentence begin-
ning and end, a bigram grammar would contain 6 x 6 probabilities, or 6 x 5 = 30 free parameters (since
probabilitiesmust sumto one). A trigram grammar would comewith (5 x 6+ 1) x 5 = 155 parameters. Yet,
the above SCFG has only 10 probabilities, only 4 of which are free parameters. The standard deviation of the
maximum likelihood estimator for multinomial parameters (equation 2.8) is O( %), where ¢ is the number
of samples. We therefore expect the estimates for the SCFG parameters to be roughly \/?T/él = 2.7 times
more reliable than those for the bigram mode!.*

The reason for this discrepancy, of course, is that the structure of the SCFG itsdlf is a discrete
(hyper-)parameter with considerable potentia variation, and has been fixed beforehand. The point is that
such astructureis comprehensible by humans, and can in many cases be constrained using prior knowledge,
thereby reducing the estimation problem for the remaining probabilities. The problem of estimating SCFG
parameters from data is solved with standard techniques, usually by likelihood maximization using the EM

1Thisis under the simplifying assumption that all bigramsand SCFG productions are exercised equally. Thisis clearly not true; one
source of systematic error is that the productionshigher up in a SCFG get used more that those closer to the terminals.



CHAPTER 7. N-GRAMSFROM STOCHASTIC CONTEXT-FREE GRAMMARS 170

algorithm (cf. Sections2.3.2, 4.2.2, 6.5.2). Inthe absence of human expertise the grammar induction methods
of Chapter 4 or Chapter 3 may be used.?

There are good arguments that SCFGs are in principle not adequate probabilisticmodel sfor natural
languages, due to the conditional independence assumptions they embody (Magerman & Marcus 1991,
Jones & Eisner 1992b; Briscoe & Carroll 1993). The main criticisms are that production probabilities are
independent of expansion context (e.g., whether a noun phrase is redlized in subject of object position), and
that lexical co-occurrences, aswell aslexical/syntactical contingenciescannot easily be represented, resulting
in poor probabilistic estimates for these phenomena.  Such shortcomings can be partly remedied by using
SCFGs with very specific, semantically oriented categories and rules (Jurafsky et al. 1994b). If the goal is
to use n-grams nevertheless, then their computation from a more constrained SCFG is till useful since the
resultscan beinterpolated with raw n-gram estimatesfor smoothing. An experiment illustratingthisapproach
isreported bel ow.

Ontheother hand, even if more sophisti cated language model sgive better results, n-gramswill most
likely still be important in applications such as speech recognition. The standard speech decoding technique
of frame-synchronous dynamic programming (Ney 1984) isbased on afirst-order Markov assumption, which
is satisfied by bigrams models (as well as by Hidden Markov Models), but not by more complex models
incorporating non-local or higher-order constraints (including SCFGs). A standard approach is therefore to
use simple language models to generate a preliminary set of candidate hypotheses. These hypotheses, e.g.,
represented as word lattices or N -best lists (Schwartz & Chow 1990), are re-evaluated later using additional
criteriathat can afford to be more costly due to the more constrained outcomes. In thistype of setting, the
techniques developed here can be used to compile probabilistic knowledge encoded in the more elaborate
language models into n-gram estimates that improve the quality of the hypotheses generated by the decoder.

Finally, comparing directly estimated, reliable n-grams with those compiled from other language
modelsisapotentialy useful method for evaluating the modelsin question.

For the purpose of thischapter we assume that computing n-gramsfrom SCFGsisof either practical
or theoretical interest and concentrate on the computational aspects of the problem.

It should be noted that there are alternative, unrelated methods for addressing the problem of the
large parameter space in n-gram models. For example, Brown et al. (1992) describe an approach based on
grouping words into classes, thereby reducing the number of conditiona probabilitiesin the model. Dagan
et al. (1994) explore similarities between wordsto interpol ate bigram estimates invol ving words with similar
syntagmatic distributions.

The technique of compiling higher-level grammatical models into lower-level is not entirely new:
Zue et al. (1991) report building a word-pair grammar from more elaborate language models to achieve
good coverage, by random generation of sentences. We essentially propose a solution for extending this
approach to the probabilistic realm. The need for obtaining n-gram estimates from SCFGs originated in
the BeRP speech understanding system already mentioned el sawhere in this thesis (Jurafsky et al. 1994a).

2This chapter describes an n-gram algorithm specifically for SCFGs. However, the methods described here are easily adapted to the
simpler HMM case.
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The previous solution to the problem was to estimate n-gram probabilities from the SCFG by counting on
randomly generated artificial samples.

7.3 TheAlgorithm

7.3.1 Normal form for SCFGs

Unlike in other parts of this thesis, we cannot get around the need to normalize the grammar to
Chomsky Normal Form (CNF). A CFG isin CNF if al productionsare of theform

X-=YZ

or

where X,Y, Z e N anda € X.

Any CFG structure can be converted into aweakly equivalent CNF grammar (Hopcroft & Ullman
1979), and in the case of SCFGs the probabilities can be assigned such that the string probabilities remain
unchanged.® Furthermore, parses in the origina grammar can be reconstructed from corresponding CNF
parses.

In short, we can, without loss of generality, assume that the SCFGs in question is in CNF. The
algorithm described here in fact generalizes to the more general Canonical Two-Form (Graham et al. 1980)
format, and in the case of bigrams (n = 2) it can even be modified to work directly for arbitrary SCFGs. Still,
the CNF form is convenient, and to keep the exposition simple we assume all SCFGsto bein CNF.

7.3.2 Probabilitiesfrom expectations
The first key insight towards a solution is that the n-gram probabilities can be obtained from the
associated expected frequencies for n-gramsand (n — 1)-grams:

e(wy...wy|L)

P(wp|wiwy . . wp_1) = (7.2)

e(wy...wp_1|L)
where ¢(w|L) stands for the expected count of occurrences of the substring w in a sentence of .4
Proof. Write the expectation for n-grams recursively in terms of those of order n» — 1 and the

conditional n-gram probabilities:
c(wr...wp|L) = c(wr... . wnp_1|L)P(wp|wiws . . .wp_1).

Therefore, if we can compute ¢(w|G) for al substringsw of lengths n and n — 1 for aSCFG G, we
immediately have an n-gram grammar for the language generated by G.

SPreservation of string probabilities s trivial if the grammar has no null or unit productions. In cases where it does, an algorithm
similar to the onein Section 6.4.7 can be used to update the probabilities.

4The only counts appearing here are expectations, so be will not be using special notation to make a distinction between observed
and expected values.
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(b)

Figure 7.1: Three ways of generating a substring w from a nonterminal X.

Notation Extendingthenotationused in previouschapters, X = o denotesthat non-terminal X generates
thestring a as asuffix, while X =7 o meansthat X generates « asaprefix. P(X =7 o) and P(X g a)

are the probabilities associated with these events.

7.3.3 Computing expectations

Our goa now isto compute the substring expectations for a given grammar. Formalisms such as
SCFGswhich havearecursiverulestructure suggest adivide-and-conquer algorithmthat followstherecursive
structure of the grammar.

We generalize the problem by considering ¢(w|X), the expected number of (possibly overlapping)
occurrences of w = w1 ... w, in strings generated by an arbitrary nontermina X. The specia case ¢(w|S)
is the solution sought, where S isthe start symbol of the grammar.

Now consider al possiblewaysthat nonterminal X cangeneratestringw = wj . . . w, asasubstring,
denoted by X = ...w1...w, ..., and the associated probabilities. For each production of X we have to
distinguish two main cases, assuming the grammar isin CNF. If thestringin questionisof length 1, w = wj,
and if X happens to have a production X — w3, then that production adds exactly P(X — ws) to the
expectation c(w|X).

If X has non-termina productions, say, X — Y Z, then w might also be generated by recursive
expansion of theright-hand side. Here, for each production, there are three subcases.

(8) First, Y can by itself generate the complete w (see Figure 7.1(a)).
(b) Likewise, 7 itsdlf can generate w (Figure 7.1(b)).

(c) Finaly, Y could generate wy ... w; as a suffix (Y Sr wy...w;) and Z, wijt1...w, & aprefix
Z 31 wj41. .. wy), thereby resultingin asingle occurrence of w (Figure 7.1(c)).

Each of these cases will have an expectation for generating w1 . . . w,, as asubstring, and the total
expectation c(w|X) will be the sum of these partial expectations. The total expectations for the first two
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cases (that of the substring being completely generated by Y or 7) are given recursively: ¢(w|Y") and e(w|Y")
respectively. The expectation for the third case is
n—1
ZP(Y S wy...w;)P(Z 51 Wig1. .. Wy), (7.2)
j=1
where one has to sum over all possible split points j of the string w.
To computethetotal expectation c(w|X ), then, wehaveto sumover all thesechoices: the production

used (weighted by the rule probabilities), and for each nonterminal rule the three cases above. Thisgives

c(wlX) = P(X —w)
+ > P(X—=YZ)
<c(w|Y) + c(w|Z)

—I—ZP(Y Z*>R ”U}]_...w]')
i=1

(7.3)

P(Z I*>L Wil .wn))
In the important special case of bigrams, this summation simplifies quite a bit, since the terminal

productionsare ruled out and splittinginto prefix and suffix alows but one possibility:

clwrwa|X) = > P(X =Y2Z)
X—=YZ

(ctwrwal?) + clunel2) (74
+P(Y Srw)P(Z 31 wz)>
For unigrams equation (7.3) simplifies even more:
c(wrX) = P(X — uy)
+ > P(X—YZ <c(w1|Y) + c(w1|Z))

X—=YZ

(7.5)

We now have a recursive specification of the quantities ¢(w|X) we need to compute. Alas, the
recursion does not necessarily bottom out, since the ¢(w|Y) and ¢(w|Z) quantities on the right side of
equation (7.3) may depend themselves on ¢(w|X'). Fortunately, the recurrence islinear, so for each string w,
we can find the solution by solving the linear system formed by all equations of type (7.3). Notice there are
exactly as many equations as variables, equa to the number of nonterminalsin the grammar. The solution of

these systems is further discussed bel ow.

7.3.4 Computing prefix and suffix probabilities

The only substantial problem left at this point isthe computation of the constantsin equation (7.3).
These are derived from the rule probabilities P(X — w) and P(X — Y Z), as wdl as the prefix/suffix
generation probabilities P(Y S w1 ... w;) and P(Z S wjg1. .. wy).
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The computation of prefix probabilitiesfor SCFGsisgenerally useful for applicationsand has been
solved withthe LRI agorithm (Jelinek & Lafferty 1991). In Chapter 6 we have seen how thiscomputation can
be carried out efficiently for sparsely parameterized SCFGs using a probabilistic version of Earley’s parser.
Computing suffix probabilitiesis obvioudy a symmetrical task; for example, one could create a ‘ mirrored’
SCFG (reversing the order of right-hand side symbolsin all productions) and then run any prefix probability
computation on that mirror grammar.

Note that in the case of bigrams, only a particularly simple form of prefix/suffix probabilities are
required, namely, the ‘left-corner’ and ‘right-corner’ probabilities, P(X . wp) and P(Y Sr wy), which
can each be obtained fromasinglematrix inversion (Jelinek & Lafferty 1991), correspondingto theleft-corner
meatrix Ry used in the probabilistic Earley parser (aswell as the corresponding right-corner matrix).

Finally, it is interesting to compare the relative ease with which one can solve the substring
expectation problem to the seemingly similar problem of finding substring probabilities: the probability that
X generates (one or more instances of) w. The latter problem is studied by Corazza et al. (1991), and shown
to lead to anon-linear system of equations. The crucid difference here isthat expectations are additive with
respect to the cases in Figure 7.1, whereas the corresponding probabilities are not, since the three cases can

occur in the same string.

7.3.5 N-gramscontaining string boundaries

A complete n-gram grammar includes strings delimited by a specia marker denoting beginning
and end of astring. In Section 2.2.2 we had introduced the symbol ‘$' for this purpose.

To generate expectations for n — 1-grams adjoining the string boundaries, the origina SCFG
grammar is augmented by a new top-level production

S —$5$ [L0]

where S isthe old start symbol, and S’ becomes the start symbol of the augmented grammar. The agorithm
is then ssimply applied to the augmented grammar to give the desired n-gram probabilitiesincluding the ‘' $'
marker.

7.4 Efficiency and Complexity | ssues

Summarizing from the previous section, we can compute any n-gram probability by solving two
linear systems of equationsof theform (7.3), onewith w being the n-gramitself and onefor the (n — 1)-gram
prefix wy ... w,_1. The latter computation can be shared among all n-grams with the same prefix, so that
essentialy one system needs to be solved for each n-gram we are interested in. The good news here is that
the work required islinear in the number of n-grams, and correspondingly limited if one needs probabilities
for only a subset of the possible n-grams. For example, one could compute these probabilities on demand

and cache theresults.
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Let us examine these systems of eguations one more time. Each can be written in matrix notation
intheform

(l—A)x=hb (7.6)

where | istheidentity matrix, A = (axy ) isacoefficient matrix, b = (bx ) istheright-hand side vector, and

c represents the vector of unknowns, c(w|X). All of these are indexed by nonterminals X, U.

We get
axy = Y. P(X=YZ)6(Y,U)+68(2,U)) (7.7)
X—=YZ
bX = P(X — UJ)
+ > P(X—=Y2)
X—=YZ
n—1
ZP(Y I*>R wl...wj)
i=1
P(Z :*>L Wi .wn) (78)

where §(X,Y) = 1if X = Y, and 0 otherwise. The expression | — A arises from bringing the variables
c(w]Y) and ¢(w|Z) to the other side in equation (7.3) in order to collect the coefficients.

We can see that al dependencies on the particular bigram, w, are in the right-hand side vector b,
while the coefficient matrix | — A depends only on the grammar. This, together with the standard method
of LU decomposition (see, eg., Press et al. (1988)) enables us to solve for each bigram in time O(N 2),
rather than the standard O(N'3) for a full system (N being the number of nonterminas/variables). The LU
decomposition itself is cubic, but isincurred only once. The full computation is therefore dominated by
the quadratic effort of solving the system for each n-gram. Furthermore, the quadratic cost is a worst-case
figurethat would be incurred only if the grammar contained every possiblerule; empirically thiscomputation
is linear in the number of nonterminas, for grammars that are sparse, i.e., where each nonterminal makes
reference only to abounded number of other nonterminal s (independent of the total grammar size).

7.5 Consistency of SCFGs

Blindly applying the n-gram agorithm (and many others) to a SCFG with arbitrary probabilities
can lead to surprising results. Consider the foll owing simple grammar

S = =z [p

79
S — 55 [g=1-p] 79

What i sthe expected frequency of unigram z? Using theabbreviationc = ¢(X|S) and equation 7.5,
we see that

¢ = P(S—=z)+ P(S—5SS)(c+e)

P+ 2qc
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Thisleads to

p p
f— f— . 7.10
‘T1-2  2p-1 (7.10)

Now, for p = 0.5 this becomes infinity, and for probabilitiesp < 0.5, the solution is negative! Thisisa
rather striking manifestation of thefailureof thisgrammar, for p < 0.5, to be consistent in the sense of Booth
& Thompson (1973) (see Section 6.4.8). An inconsistent grammar is one in which the stochastic derivation
process has non-zero probability of not terminating. The expected length of the generated strings should
therefore beinfinitein this case.

Booth and Thompson derive a criterion for checking the consistency of a SCFG: Find the first-
moment matrix E = (exy ), whereexy istheexpected number of occurrences of nonterminal Y in aone-step
expansion of nonterminal X, and make sure its powers E* convergeto 0 as k — oo. If so, the grammar is
consistent, otherwiseitis not.®

For the grammar in (7.9), E isthe1 x 1 matrix (2¢). Thus we can confirm our earlier observation
by noting that (2¢)* convergesto 0iff ¢ < 0.5, or p > 0.5.

Notice that E is identical to the matrix A that occurs in the linear equations (7.6) for the n-gram
computation. The actua coefficient matrixis| — A, and itsinverse, if it exists, can be written as the geometric
sum

(I —A)T=14+A+AT LA}

Thisseriesconverges precisely if A* convergesto 0. Wehavethus shown that the existence of asolutionfor the
n-gram problemis equivalent to the consistency of the grammar in question. Furthermore, the solution vector
c= (I — A)~ b will dways consist of non-negative numbers: it is the sum and product of the non-negative
values given by equations (7.7) and (7.8).

The matrix | — A and its inverse turn out to have a specid role for SCFG: it is, in a sense, a
‘universal problem solver’ for awhole series of global quantities associated with probabilistic grammars. A

brief overview of theseis given in the appendix to this chapter.

7.6 Experiments

The agorithm described here has been implemented, and is being used to generate bigrams for
a speech recognizer that is part of the BeRP spoken-language system (Jurafsky et al. 1994a). The speech
decoder and language model components of the BeRP system were used in an experiment to assess the benefit
of using bigram probabilities obtained through SCFGs versus estimating them directly from the available
training corpus. The system’s domain are inquiries about restaurantsin the city of Berkeley. Table 7.1 gives
dtatistics for the training and test corpora used, as well as the language models involved in the experiment.
Our experiments made use of a context-free grammar hand-written for the BeRP domain. Computing the
bigram probabilities from this SCFG of 133 nonterminals involves solving 657 linear systems for unigram

5An alternative version of this criterion is to check the magnitude of the largest of E’s eigenvalues (its spectral radius). If that value
is> 1, the grammar isinconsistent; if < 1, itis consistent.
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Training corpus | Test corpus
No. of sentences 2621 364
No. of words 16974 2208
Bigram vocabulary 1064
Bigram coverage 100% | 7%
SCFG productions 1177
SCFG vocabulary 655
SCFG coverage 63% |  51%

Table 7.1: BeRP corpora and language model statistics.
Coverage is measured by the percentage of sentences parsed with non-zero probability by a given language
model.

expectations and 108959 linear systems for bigram expectations. The process takes about 9 hours on a
SPARCstation 10 using a non-optimized Lisp implementation.®

The experiments and results described bel ow overlap with those reported in Jurafsky et al. (1994b).

In experiment 1, the recognizer used bigrams that were estimated directly from thetraining corpus,
without any smoothing, resulting in aword error rate of 33.7%.

In experiment 2, a different set of bigram probabilities was used, computed from the context-free
grammar, whose probabilities had previously been estimated from the same training corpus, using standard
EM techniques. This resulted in a word error rate of 32.9%. This may seem surprisingly good given the
low coverage of the underlying CFGs, but notice that the conversion into bigrams is bound to result in a
less constraining language model, effectively increasing coverage. For comparison purposes we aso ran the
same experiment with bigrams computed indirectly by Monte-Carlo sampling from the SCFG, using 200,000
samples. The result was dightly worse (33.3%), confirming that the precise computation has an inherent
advantage, as it cannot omit words or constructionsthat the SCFG assigns very low probability.

Finally, in experiment 3, the bigrams generated from the SCFG were augmented by those from the
raw training data, in aproportion of 200,000 : 2500. We have not attempted to optimize thismixture proportion,
e.g., by deleted interpolation (Jelinek & Mercer 1980).” With the bigram estimates thus obtained, the word
error rate dropped to 29.6%, which represents a statistically significant improvement over experiments 1
and 2.

Table 7.2 summarizes these figures and also adds two more points of comparison: a pure SCFG
language model and a mixture model that interpol ates between bigram and SCFG. Notice that the latter case
is different from experiment 3, where the language model used is a standard bigram, albeit one that was
obtained by ‘mixing’ counts obtained both from the dataand from the SCFG. The system referred to here, on

80ne inefficiency is that the actual number of nonterminals (and hence the rank of the coefficient matrix) is 445, as the grammar is
convertedto the Simple Normal Form introduced in Chapter 4.

“This proportion comes about becausein the original system, predating the method described here, bigrams had to be estimated from
the SCFG by random sampling. Generating 200,000 sentence samples was found to give good converging estimates for the bigrams.
The bigrams from the raw training sentences were then simply added to the randomly generated ones. We later verified that the bigrams
estimated from the SCFG were indeed identical to the ones computed directly using the method described here.
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Word error (%)
Bigram estimated from raw data 33.7
Bigram computed from SCFG 329
by Monte-Carlo sampling 333
Bigram from SCFG plusdata 29.6
SCFG 29.6
Mixture Bigram-SCFG 28.8

Table 7.2: Speech recognition accuracy using variouslanguage models.

the other hand, is a standard weighted mixture of two distinct submodels, as described in Section 2.3.1.

The experiments therefore support the argument made earlier that more sophisticated language
models, even if far from perfect, can improve n-gram estimates obtained directly from sample data. We
also see that the bulk of the improvement does not come from using a SCFG alone, but from smoothing the
bigram statisticsthrough the constraintsimposed by the SCFG (possibly combined with a mixture of thetwo
language models).

7.7 Summary

We have described an agorithm to compute in closed form the distribution of n-grams for a
probabilistic language given by a stochastic context-free grammar. The agorithm is based on computing
substring expectations, which can be expressed as systems of linear equations derived from the grammar.
Listed below are the steps of the complete n-gram-from-SCFG computation. For concreteness we give the
version specific to bigrams (n = 2).

1. Computetheprefix (1eft-corner) and suffix (right-corner) probabilitiesfor each (nonterminal ,word) pair.

2. Compute the coefficient matrix and right-hand sides for the systems of linear equations, as per equa-
tions(7.4) and (7.5).

3. LU decompose the coefficient matrix.

4. Compute the unigram expectations for each word in the grammar, by solving the LU system for the
unigram right-hand sides computed in step 2.

5. Computethebigram expectationsfor each word pair by solvingthe LU system for thebigramright-hand
sides computed in step 2.

6. Compute each bigram probability P(w2|w1), by dividing the bigram expectation c(wiw;|S) by the
unigram expectation c(w1|S).
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The agorithm has been found practica in the context of a medium-scale speech understanding
system, were it gave improved estimates for a bigram language model, based on a hand-written SCFG and
very small amounts of availabletraining data.

Deriving n-gram probabilitiesfrom more sophisticated language model s appears to be a generally
useful technique which can both improve upon direct estimation of n-grams, and allows available higher-
level linguistic knowledge to be effectively integrated into speech decoding or other tasks that place strong

constraints on usable language models.

7.8 Appendix: Related Problems

We have seen how n-gram expectations for SCFGs can be obtained by solving linear systems
based on the matrix | — A, where | is the identity matrix and A is the first-moment (expectation) matrix of
nonterminal occurrences for asinglenonterminal expansion. Asit turnsout, anumber of apparently unrelated
problems arising in connection with SCFGs and other probabilistic grammars have solutions based on this

same matrix. These are briefly surveyed below, without detailed proofs.

7.8.1 Expected string length

To computethe expected number of terminalsinastring, thesystem | — A issolved for theright-hand
sidevector containing the average number of terminal s generated in asingle production, for each nonterminal .

For example, if

X — abZ

are dl productions with LHS X, the entry indexed by X in the right-hand side vector would be P(X —
abZ) x 24+ P(X —¢) x L.

The solution vector contains the expected lengths for the sublanguages generated by each of the
nonterminals. Thus, the expected sentence string length is the S-entry in the solution vector.

The problems and its solution are easily generalized to obtain the expected number of terminals of
a particular type occuring in a string (Booth & Thompson 1973).

7.8.2 Derivation entropy

The derivation entropy isthe average number of bitsrequired to specify a derivation from a SCFG.
Is is computed from a right-hand side vector that contains the average negative log probabilities for the

productionsof each LHS nonterminal. For example, based on

X — A

— p
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theright-hand side entry for X is—P(X — A)log P(X — A) — P(X — p)log P(X — p).
The derivation entropy of the grammar is the solution vector entry indexed by the start symbol.

7.8.3 Expected number of nonterminal occurrences

Consider thefollowing problem: starting from anontermina X, how many nonterminalsof typeY
are generated? Let N = (nxy ) bethe matrix formed by these expectations (assuming they exist). Itiseasy
to verify that N satisfies the familiar recurrence N = | + AN, fromwhichweget N = (1 — A)~L.

Another way to look at this outcome is that the expected number of nonterminals of type Y,

represented by the column vector nY in N, is a problem of the same type as those described above:
(1—ANY =i¥

whereiY isthe Y -column of the identity matrix.

In fact, the nonterminal expectations are the most genera of al the problems of this type, in the
following sense. All the other quantities considered here, and conversealy al those with a linear system
solution defined by a right-hand side vector b and the coefficient matrix | — A, can be represented as weighted
sums over the nonterminal expectations N, where the weighting is provided by the vector b.

For example, the expected length = x of the strings generated by nonterminal X can be seen (from
first principles) to be the weighted sum

rx = g nxyby
>

where nxy isaverage number of Y’'sgenerated by X, and by isthe expected number of terminals produced
by Y (inasinglederivation step). Written in matrix form this becomes

x = Nb
andusing N = (1 — A)~1 we get the system used above (Section 7.8.1) for solving x,
(l — A)X =b

Thus, derivation entropy, n-gram expectations, etc. al turn out to be linear weighted sums of the
nonterminal expectations N. Needless to say, these quantities are well-defined if and only if the underlying
SCFG is consistent.

7.84 Other grammar types

Thesignificanceof | —A extendstoall typesof probabilistic grammarsbased on Markov or branching
processes over states. For example, in HMMs all of the above computations apply when ‘nonterminal’ is
replaced by ‘ state’ where appropriate. The first-moment matrix A for HMMs isjust the transition matrix, and

N = (I — A)~! expresses the expected number of visitsto a state.
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Chapter 8

Futuredirections

In thisfina chapter we suggest a number of potential continuations of the work described in this
dissertation. Probabilisticlanguage modeling has certainly proven to be atheoretically and practically useful
approach, including the model merging paradigm for structural learning studied here. It has given rise to
concrete applications (in the case of HMMs) and gives new perspectives on some linguisticissues, aswe have
tried to show mainly in our discussion of the SCFG and PAG modeling frameworks.

However, and not surprisingly, the work to date raises more questions than it provides definitive
answers.  Apart from model-specific problems discussed in the preceding chapters, a number of more
fundamental issues can be identified. Invariably, these lead to worthwhile avenues for future work.

8.1 Formal characterization of learning dynamics

It would be extremely useful to be able to predict the sample complexity of a given target grammar
and merging-based learning algorithm, i.e.,, the number of samples required to reliably learn the target
grammar. Asafirst step, thiswould include a prediction of how many samples are needed to make the target
grammar (or one equivalent to it) the one with globally optimal posterior probability. A further, more difficult
problem is to predict when a limited search procedure of specified type would be able to actually find that
global optimum.

Within this general problem of sample complexity it is aso interesting to draw a distinction
between sample structure and sample distribution. In other words, how sensitiveis alearner to a sample that
is representative regarding the possible strings of the language, but exhibits different frequency statistics?*

1This question was pointed out by Robert Wilensky.



CHAPTER 8. FUTURE DIRECTIONS 182

8.2 Noisy samples

A related problem concerns the potential presence of noise in the sample, i.e., samples randomly
altered by an independent process, such as random replacement of symbols. Plain model merging agorithms
will simply try to model the language resulting from the composition of the undistorted language and the
noise process. |If the probabilities of distortions by noise are small enough one could expect to recover the
origina language model by pruning low probability parts of the induced model structures.

Pruning techniques have indeed been applied successfully in conjunction with the HMM merging
algorithm as applied to multiple-pronunciation models (Section 3.6.2) in cases were the training corpus was
known to contain outlier (mislabeled) samples, as reported by Wooters (1993). Again, aformal characteriza-
tion of the conditions under which this method is successful would be obvioudy useful.

8.3 Moreinformative search heuristics and biases

The work so far clearly shows that, as expected, increased model expressiveness requires a more
varied repertoire of search operators, which in turn necessitates increasingly non-local search strategies.
Carefully chosen heuristics and macro operators can counter the increase in search complexity in some cases.

This raises the question of what principled sources of search bias might be used. A main theme
of the present studies was that a considerable amount of linguistic structure can be found by model merging,
based solely on non-informative priorsand ‘ dumb’ search strategies. However, linguistic theorieswith strong
apriori bases should hel pin cases where the uninformed approaches turn out to be insufficient. A prerequisite
for thisapproach isthat the predictions of the linguistic theory can be cast into effective search heuristics.

8.4 Induction by model specialization

Pure model merging is based on operators that |eave the weak generative capacity of the models
unchanged or produce a strictly moreinclusive model. We aready mentioned an alternative, inverse approach
in Chapter 3: mode splitting or specialization. Given the loca nature of the search process, we expect
improvements from adding operators that can effectively undo previous merging steps.

Also, alearning agorithm that goes from general-to-specific incorporates a different global biasin
the face of local search: it will tend to err on the side of the too general, rather than the too specific model.
Having both types of biases available allows choosing or mixing them according to the needs of particular
applications. For example, if it is important that the resulting model have high coverage of new data, one
might prefer over-general models.

Theapproachesintheliteraturethat make use of state splittingare so far based entirely onlikelihood
criteria. However, the Bayesian eval uation methods used in thisthesis are clearly separable from the merging

and search componentsof theoverall approach, and should apply to other systemsaswell. A first practical step
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towards a unified induction framework would therefore study how specializing a gorithms can be combined
with posterior probability maximization to advantage.

8.5 New applications

We aready remarked that natural language is a less than ideal application domain for exclusively
or mainly syntax-oriented probabilistic characterizations, due to the wide range of extra-syntactic constraints
itis subject to. Formal language models are starting to be used more widely, in such areas as computational
biology, graphical modeling (* picture grammars'), and document structure analysis. Probabilistic learning
approaches, especially structural learning, still await study in these areas.

Still, natural language remains an important topic. The difficulties cited earlier seem to indicate
that no singlelearning algorithm or paradigm can hopeto be apractica way of inducing suitable modelsfrom
large corpora. A naturd strategy thereforeisto make more selective, and combined use of partia solutions, as
indicated at the end of Chapter 4. A major probleminthisregard, apart from the obviousone of identifyingthe
right partial solutionsworth combining, will beto find the unifying principlesthat alow different approaches
to ‘talk’ to oneanother. Hereit seemsthat probability theory (and the derived information theoretic concepts,
such as description length) can again play a centra role.

8.6 New types of probabilistic models

Ultimately, probabilistic approaches to language need to identify alternatives to the traditional
formalism used to date. We have seen that each such formalism defines itself by the underlying notion of
derivation structure and the set of conditional independence assumptions made in defining the probabilitiesof
derivations. In choosing thesg, there is always a design trade-off between capturing the relevant probabilistic
contingencies found in a domain, and the computational expense of the associated algorithms for parsing,
estimation, etc. It seems that properties of learnability (by model merging or otherwise), both complexity
and robustness, should be added to these criteria. Model merging is a natural theoretical framework in this
context, sinceit applieswidely across model classes, and can thus serve as abasisfor comparison in questions
of learnability.
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