Hiding a Semantic Class Hierarchy in a Markov

Model

Steven Abney and Marc Light

August 1, 1998

Abstract

This paper introduces a new model of selectional preference induc-
tion. Unlike previous approaches we provide a stochastic generation
model for the words that appear as arguments of a predicate. More
specifically, we define a hidden Markov model with the general shape
of our semantic class hierarchy and we use an EM-like algorithm for
parameter estimation. This model enables us to handle word sense
ambiguity in the input in a principled fashion. In addition, it can be
used to estimate a number of distributions such as Pr(word|predicate),
Pr(word|semantic-class), Pr(word-sense|word, predicate). These dis-
tributions can be used directly to help solve ambiguity resolution prob-
lems such as word sense disambiguation and syntactic structure dis-
ambiguation. One can also derive a traditional list of semantic classes
that capture the selectional preferences of a predicate for a comple-
ment. In addition, the Pr(word|predicate) distribution can be seen as
a very specific language model, i.e. | a language model for the head of
the argument of the predicate. This work is of general interest because
it weds two important entities in natural language processing systems:
hierarchical class structures and stochastic generation models.

1 Introduction

We describe here an approach to inducing selectional preferences from text
corpora. In the traditional view, a predicate constrains its arguments by
selecting for particular semantic classes, or concepts. Selectional restriction
of the traditional sort can be characterized as a relation p(v, r,c) over pred-
icates v, syntactic roles r, and argument concepts c¢. Individual instances
(v,r, c) are selectional tuples. Examples are given in table 1.

Predicate Role Argument Class
splatter subj CAUSAL-AGENT
splatter obj FLUID

splatter on SURFACE

tasty subj EDIBLE-ITEM
shrug subj PERSON
shrug obj SHOULDER

Table 1: Selectional tuples

Of more interest to computational linguistics is selectional preference, a
continuous-valued generalization of selectional restriction. Selectional pref-
erence is a mapping o : (v,r,¢) — a that maps each tuple (v,r,) to a real
number a, the degree of preference of v for ¢ with respect to role r. Positive
degrees of preference are intended to correlate with intuitive judgments of
“plausibility” or “typicality”, and negative judgments are intended to cor-
relate with intuitive judgments of “implausibility”. But there is no extant
proposal on how to quantify such intuitions. The only obvious course, de-
signing a psycholinguistic experiment, would entail a prohibitive effort for a
large sample of tuples, and would likely have large variances that limit its
usefulness for evaluating automatic preference estimation techniques.

For this reason, we have chosen to characterize selectional preference as
a side-effect of a more readily evaluable model, namely, a stochastic model
for generating what we will call co-occurence tuples: triples (v,r,n) for v a
predicate, r a syntactic role, and n the headword of the argument filling the
role r with respect to v. An example of a co-occurence tuple is (splatter,
obj, water). Co-occurence tuples can be obtained from text corpora, and
can be used to make inferences about the probability of selectional tuples.
For example, the co-occurence tuple (splatter, obj, water) may be taken as
evidence for the selectional tuple (splatter, obj, FLUID).

For this study, we have used the British National Corpus (100M words),
from which we have extracted co-occurence tuples using the Cass parser [1].
By way of illustration, table 2 shows the values of n in tuples (eat, obj, n)
along with their frequencies in the corpus. In this data, and throughout the
paper, any inflectional morphology has been eliminated from both predicate
and argument. That is, the values of v and n are properly speaking lemmas—
words in uninflected base form.

On the assumption that the selectional tuple (eat, 0bj, EDIBLE-ITEM) is

meat 45 bucket 1 ice 2
tape 1 investment 1 soup 2
proportion 2 kitchen 1 fry 4
root 4 salad 2 top 1
bread 14 feast 1 scrap 2
majority 2 sauce 1 sugar 1
principle 1 food 77 hole 2
roll 4 pack 1 bag 2
race 1 mouthful 3 dinner 11
sheep 1 salt 1 meal 46
trout 2 pasta 1 slice 7
dish 2 spaghetti 6 chicken 5
stick 1 egg 18 average 1
sandwich 13 yogurt 1 mustard 1
breakfast 30 garlic 1

Table 2: Objects of eat in the BNC

responsible for these observed co-occurence tuples, one would expect to get
arguments that are edible. As is exemplified by investment, average, tape,
and race, this is not always the case. This noise is sometimes due to tagging
or parsing errors, and sometimes due to metaphorical uses of eat. Note that
the “good” examples such as food and meal are much greater in number and
frequency.

Another factor that complicates the inference of selectional tuples from
co-occurence tuples is word sense ambiguity. The word bread in table 2 pro-
vides an example. Bread can be used to refer to a food, e.g., the multigrain
bread in Germany is wonderful, but it can also refer to money, e.g., I could
really use the bread since my car just broke down. For this reason, it is not
immediately clear which concepts the 14 tokens of bread provide evidence
for. The model we propose handles this sort of uncertainty in a natural way;
we return to the question of word sense ambiguity shortly.

Our model generates co-occurence tuples as follows. The probability
p(v,r,n) of a co-occurence tuple can be expressed as p(v,r)p(n|v,r). Our
central concern is the conditional probability p(n|v,r). We associate a hid-
den Markov model (HMM) with each pair (v,r), in order to characterize
the distribution p(n|v,r). We also construct an HMM to characterize the
distribution of nouns in the corpus as a whole. The latter HMM we call the
background model, and the HMM’s associated with particular (v, r) pairs we

call foreground models.

The states and transitions of the HMM’s are identified with the nodes
and arcs of a semantic class hierarchy. We do not attempt to induce a
hierarchy, but take one as given. The nodes of the hierarchy represent
semantic classes (concepts), and the arcs represent hyponymy (that is, the
“is-a” relation). Some concepts are expressible as words: these concepts are
word senses. (We assume for the moment that all and only the terminal nodes
of the hierarchy are word senses, though we later relax this restriction.) A
sense may be expressible by multiple words (synonyms), and, conversely,
a single word may be an expression of more than one sense (word sense
ambiguity).

The only constraint we place on the shape of the hierarchy is that it have
a single root. The shape of the hierarchy is otherwise unrestricted: it may
include multiple inheritance, non-partioning sub-classes, etc.

A “run” of one of our HMM’s begins at the root of the semantic hier-
archy. A child concept is chosen in accordance with the HMM’s transition
probabilities. This is done repeatedly until a terminal node (word sense) ¢
is reached, at which point a word w is emitted in accordance with the prob-
ability of expressing sense ¢ as word w. Hence, each HMM “run” can be
identified with a path through the hierarchy from the root to a word sense,
plus the word that was generated from the word sense. Hence, also, every
observation sequence generated by our HMM’s consists of a single noun:
each run leads to a final state, at which point exactly one word is emitted.

All HMM’s have the same structure, determined by the semantic hierar-
chy. Where they differ is in the values of the associated parameters: state-
to-state transition probabilities and state-to-word emission probabilities. To
estimate parameters, we require a training sample of observation sequences.
Since each observation sequence consists of a single word, a training sample
is simply a collection of word tokens. For a foreground model, the training
sample consists of the nouns filling the associated “slot” (v, r)—that is, a
token of the noun n is included in the training sample for each token of
the tuple (v, r,n) that occurs in the corpus. For the background model, the
training sample consists of all noun tokens in the corpus. HMM parameter
values are then estimated using a variant of the forward-backward training
algorithm [?].

This approach permits us to address both word sense disambiguation
and selectional preference. An ambiguous word is one that could have been
generated by means of more than one state sequence. For a given ambiguous
word n appearing in a slot (v,r), we can readily compute the posterior

probability that word sense ¢ was used to generate n, according to the (v, r)
foreground model. We can disambiguate by choosing the word sense with
maximum posterior probability, or we can use the probabilities in a more
sophisticated model that uses more contextual information than just the slot
that the word appears in.

Selectional preference can be characterized as the difference between the
foreground and background models. We use the generation model to char-
acterize the “prominence” of a state. We have considered several definitions
of prominence. The most satisfactory seems to be the log probability of
visiting the state while generating a random word. If state ¢ is significantly
more prominent in the (v, r) foreground model than it is in the background
model, we take this as evidence that v selects for ¢ in role r; and v selects
against c if c is significantly less prominent in the foreground model than in
the background model.

Another way of thinking about selectional preference is as a distribution
over words. For example, the selectional preference of the verb eat for its di-
rect object would be expressed by high probabilities for words like breakfast,
meat, and bread and low probabilities for words like thought, computer, and
break. This conception of selectional preference is related to language mod-
eling in speech recognition. In fact, the selectional preference of a predicate-
role pair can be thought of as a very specific language model. Thus, the
selectional preference of eat for its direct object would be a language model
for the nouns that can appear as the head of the direct object of eat. This
way of thinking about selectional preferences is useful because it points to
possible applications in speech recognition and because it allows us to eval-
uate our selectional preferences using cross-entropy against an empirically
derived distribution.

In sum, we characterize selection and word sense disambiguation via a
collection of HMM’s, one for each (v,r) pair. The HMM’s have a common
state-graph that is determined by a semantic hierarchy. For induction of
selectional preferences and disambiguation models, we require a semantic
hierarchy and a corpus of co-occurence tuples. The input-output mapping
of our induction algorithm are illustrated in Figure 1.}

'Glenn Carroll provided us with the initial idea and sketch of this figure.

Semantic Class Hierarchy Corpus
(eat,0BJ,meal)
(eat,OBJ,sausage)

(grill,subj,professsor)
(toast,to,future)

e

Abney & Light

INDUCTION SYSTEM (++PRO) UltraSmart
Driven

eat-OBJ grill-OBJ toast-OBJ
HMM HMM HMM

Figure 1: Input and output of induction system

1.1 Related work

There have been a number of attempts to derive selectional preferences using
as input parsed corpora and a semantic class hierarchy. One of the first such
approaches was [5]. Our work is closely related to Resnik’s and it provided a
starting point for us. He uses the same input illustrated in Figure 1 but the
system provides only a distribution over classes conditioned on a predicate-
role pair: p(c|v,r). He estimates p(c|v,r) as f(v,r,¢)/> . f(v,r,), where
f(v,r,¢) is in turn approximated by allocating the frequency of the co-
occurence tuple (v,r,n) among the classes C'(n) to which the senses of n
belong.

For example, suppose the word bread has two senses, BREAD and MONEY.
Suppose further that BREAD is a hyponym of BAKED-GOODS, FOOD, ARTI-
FACT, and TOP, and MONEY is a hyponym solely of Top. Then C(bread) is
{BREAD, BAKED-GOODS, FOOD, ARTIFACT, TOP, MONEY }. Tokens of bread
are taken as ambiguous evidence for all concepts in C(bread); the weight
of evidence is divided uniformly across C'(bread). Hence each token of (eat,
obj, bread) counts as 1/6 of a token of (eat, obj, BREAD), 1/6 of a token of
(eat, obj, BAKED-GOODS), and so on.

Resnik is not very explicit about how the probability p(c|v,r) is to be

interpreted, but the apparent intent is that one generates a noun to fill
the slot (v, r) by first choosing a concept ¢ according to p(c|v,r) and then
choosing a noun according to an (unspecified) distribution p(n|c). This
model of generation (assuming it is in fact the one intended by Resnik) differs
from ours in that nouns are not generated by a walk down the hierarchy, but
rather a noun is generated in one step from a class. There is no necessary
connection between the distribution of nouns generated from a class ¢ and a
class ¢/, even if ¢’ is the sole child of ¢ and ¢ the sole parent of ¢/. (Though of
course Resnik’s estimation technique would guarantee the same distribution
for ¢ and ¢’ in such a case.)

[6] modifies Resnik’s method by apportioning counts f(v,r, n) among
the paths through the semantic hierarchy from the root node to a sense of
n. The count for noun n is first divided uniformly among its senses, then
the count for a sense s is divided uniformly among the paths leading from
the root to s. The count for an arbitrary concept c is the sum of the counts
of paths on which ¢ lies. The intended generation model is apparently one
in which one chooses a concept, then chooses a path leading downward from
the concept to a word sense, then chooses a word that expresses the word
sense. This is not explicitly stated, however, and no attempt is made to
estimate p(path|c) or p(w|path).

Resnik uses p(c|v,r) to quantify selectional preference by comparing it
to p(c), the marginal probability of class ¢ appearing as an argument. He
measures the difference between these distributions as their relative entropy

(D):

ple|v,r
Dp(elo, () = X2 plelor) g P,
The total amount of “selection” that a predicate v imposes on the filler of
role r is quantified as D(p(c|v,r)||p(c)). The selectional preference of v for
c in role r is quantified as the contribution of the ¢ to the total amount of
selection:

p(clv,r)
p(clv,r)log o)

D(p(c'v,r)[lp(e)
The class or classes produced as the output for the predicate are those with
the highest selpref value.

In our terms, Resnik identifies the prominence of concept ¢ with log p(c|v, r),
yielding a selectional strength of log p(c|v,r) — log p(c), which Resnik then
scales by p(c|v,r)/D(p(c|v,r)||p(c)) for purposes of comparing selectional
strengths across predicates and roles.

selpref(v,r,c) =

Other work on the induction of selectional preferences includes that of
Abe and Li. They characterize the selectional restriction of a predicate with
a horizontal cut through a semantic hierarchy, and use Rissanen’s principle of
Minimum Description Length (MDL) to choose a cut that optimally balances
simplicity and descriptive adequacy. More specifically, a cut is a set of
concepts that partition the set of nouns belonging to the hierarchy. A cut is
deemed simpler if it cuts the hierarchy at a higher place (i.e., the cut contains
fewer concepts), and descriptive adequacy is measured by comparing the
actual distribution of nouns filling a slot (v,) to the closest approximation
one can obtain by estimating p(n|c) for only the concepts ¢ in the cut.

Again, the intended stochastic generation model is not clear. One simple
interpretation is that one generates a noun to fill the slot (v,r) by first
choosing a concept ¢ from the cut according to the weights along the cut
and then choosing a noun according to an (unspecified) distribution p(n|c).

The primary difference between our approach and previous work is that
our approach is based on a stochastic model for generating the same sort
of objects as make up the input corpus, namely, co-occurence tuples. In
previous models, the interpretation of expressions such as p(c|v, r) is obscure,
and without clarity about what stochastic process is producing the data, it
is impossible to gauge how well probabilities are being estimated. Adopting
an explicit stochastic process permits us to replace Resnik’s and Ribas’ ad
hoc apportionment of evidence with motivated inferences from incomplete
data using the Expectation-Maximization (EM) algorithm.

Having a complete generation model also permits us to do word sense
disambiguation in a motivated way, something the Resnik model does not
support. The Viterbi algorithm can be used to select the most-probable
path through the hierarchy, for example, or an adaptation can be used to
find the word sense with the highest posterior probability given word w in
the context (v,r): p(word-sense|(v,r)).

Having an explicit stochastic model also permits us to embed the se-
lectional model in other applications. For example, selectional preference
information in this form can be readily integrated with probabilistic infor-
mation from other aspects of context to create more sophisticated word
sense disambiguation models. Or prepositional phrase attachment can be
performed by comparing the respective probabilities of generating the nomi-
nal head of the PP given that the PP occurs as an argument of the respective
predicates of the attachment sites: if one was trying to disambiguate the at-
tachment of on the cheek in she kisses the man on the cheek, one could
compare Pr(cheek|kiss-on) and Pr(cheek|man-on). One could also use the

Pr(word|p) values as part of a language model; this would allow the lan-
guage model to make use of selectional preferences and semantic classes for
smoothing.

In the following section we will describe our stochastic model and its
training. Then we will discuss sample selectional preferences and provide an
evaluation of the system based on the cross entropy of the models’ distri-
butions and different empirical distributions collected from parsed corpora.
Finally, we will discuss the applications discussed briefly above in more detail
and conclude.

2 The Model

2.1 Semantic Hierarchies as HMM’s

As mentioned above, the shape of our HMM’s is determined by the semantic
class hierarchy we receive as input. We would like our approach to be
compatible with as wide a range of semantic assumptions as possible. For
our purposes, a semantic hierarchy consists of a directed acyclic graph whose
nodes represent classes or concepts and whose arcs represent hyponymy (“is-
a” links). We also assume an expressibility relation that associates concepts
with the words that can be used to express them. For example, in Figure 2,
the concept PERSON can be expressed by person, someone, or mortal. Word
senses are defined to be expressible concepts; e.g., in Figure 2, PERSON and
WORKER are word senses but ENTITY and LOCATION are not. We make
no assumptions at all about what concepts “mean”—whether they are to
be interpreted extensionally or intensionally, what sorts of inferences they
support, etc. To inform intuition, we use the labels assigned to concepts by
the creators of the semantic hierarchy, but these labels play no role in our
models. We assume without loss of generality that the graph has a unique
root node from which all other nodes can be reached. (If the hierarchy has
multiple roots, we add a new unique root node with arcs leading to each of
the former roots.)

The hierarchy that we have used for our experiments is WordNet. In
WordNet, the role of concepts is played by what are called synsets—sets of
synonymous words. That is, concepts are identified with the set of words
that can be used to express them. As a consequence, every concept is a
word sense; every concept is associated with one or more words. Hyponymy
relations are defined between synsets, providing the arcs of the graph. A
fragment of the hierarchy is illustrated in Figure 2. The solid arrows rep-

TOP

A

LOCATION ENTITY

/\

LIFE-FORM CAUSAL-AGENT

person
beast = - ANIMAL

PERSON ¢ 7_yp- SOmMeone
BI?E "N ortal
BEE WORKER FEMALE MALE
AN \ pe — ’\\ ’ /\\ \‘
ki \ N
worker ‘ female ‘ man
proletarian woman

Figure 2: Example Semantic Class Hierarchy

resent hyponymy and the dashed arrows represent expressibility. Note that
there is multiple parentage: PERSON is a hyponym of both LIFE-FORM and
CAUSAL-AGENT. Worker is an example of an ambiguous word: it is a word
that expresses two different concepts, i.e., it “has” two word senses (where
word sense has the meaning defined above). As labels, we have used the first
word in a synset. (In the complete graph, there are cases in which multiple
synsets have the same first word. In such a case, we add an arbitrary digit
to keep the labels distinct.)

Next we define the stochastic generation model, by constructing an HMM
based on the concept graph. In the simplest case, the states of the HMM are
identified with the nodes of the concept graph, the transitions of the HMM
are identified with the arcs (hyponymy links) of the concept graph, and the
emissions of the HMM are identified with the expressibility relation. In a
bit more detail, the HMM is defined as follows. A concept graph is given,
and an expressibility relation from nodes to words. The nodes of the graph
are identified with concepts C = {¢y,...,¢,}, and the expressibility relation
relates concepts to words W = {wq, ..., w,}. The HMM consists of a set of
states {q1, ..., ¢, }, which we identify with the nodes of the concept graph; a
set of possible emissions which we identify with W U {e} (that is, we permit

10

non-emitting states); and three parameter matrices:

A ={a;;} The transition probabilities. The value a;; represents the proba-
bility of making a transition from state ¢; to state ¢;. a;; is nonzero
only if there is an arc in the concept graph from concept ¢; to concept
c;.

B = {b;(k)} The emission probabilities. The value b;(k) represents the
probability of emitting word wy while in state ¢;. States corresponding
to nonterminal nodes in the concept graph are non-emitting (that is,
they emit € with probability 1), and states corresponding to terminal
nodes are emitting states (they emit ¢ with probability 0).

7 = {m;} The initial state distribution. ; is identically 1 for the start state
(corresponding to the root node), and 0 for all other states.

Following [3], we characterize HMM’s as probabilistic Moore machines—
that is, transducers that generate output from states rather than transitions.
Rabiner’s formulae do not explicitly allow for non-emitting states, but the
required generalization is straightforward.

In the definition just given, it is assumed that all and only the terminal
nodes in the concept graph are word senses. We would like to relax that
condition—WordNet, for example, associates words with all nodes of the
concept graph. For now, we will require that all non-final states of the HMM
be non-emitting states, and that all final states be emitting states.? This is
to guarantee that every observation sequence consists of a single word. In
addition, it guarantees that the probability of the observation symbols other
than e form a distribution. To accommodate a more general concept graphs,
we complicate the mapping from concepts to states. We continue to require
that all terminal nodes in the concept graph be word senses, but we now
relax the requirement that all word senses be terminal nodes. In Figure 2,
PERSON is such a nonterminal word sense. A nonterminal word sense c is
associated with a pair of states (qf, qnf); qf is a final state and ¢,,ris non-
final. The incoming and outgoing arcs of node ¢ correspond to transitions
involving ¢,,r, whereas the words expressing ¢ correspond to emissions from
gs. In addition, there is a single transition from Unf to qf- The mapping is
illustrated in Figure 3.

2Later in section 3 we will loosen this restriction to allow for final states that emit e
with probability 1.

11

. bread
s}}'—'-—' bread_stuff BREAD
TS daff of life

4 bread

BREAD f -+ bread_stuff
& oaff of life

000 000

Concept Graph State Graph

Figure 3: Converting WordNet

We construct one such HMM for each predicate-role pair (v,r), and one
background model trained on all nouns in the corpus, regardless of context.
Each HMM has the same structure and the same set of parameters, but
they differ in their values for the parameters. The differences in parameter
values is determined by the differing frequencies of words in their training
samples. The foreground model for context (v,r) is trained on the words
appearing in co-occurence tuples (v, r,n), one token of n for each token of
(v,r,n) in the corpus. We use the a forward-backward-like algorithm to
estimate parameter values from training samples.

3 Parameter Estimation

We had originally hoped that after turning our semantic hierarchy into
an HMM as described above, we could simply run the standard forward-
backward algorithm on the training corpus and we would get a useful model.
Unfortunately, there are a number of reasons why this does not work. We
will describe these problems and our solutions in the context of disambiguat-
ing the words in the training data with multiple word senses, a fundamental
task in the estimation of selectional preferences. In each of the three sub-
sections below we describe a problem and our solution.

12

epsilon = 1/5 Top

s 78
COGNITION FOOD epsilon =2/9
epsilon =2/3 7 o7
1 a7 o5
FLESH FRUIT BREAD DAIRY
A BT BT
i\\\\,’/ 1 apple bagel cheese
meat

Figure 4: Smoothing

3.1 Smoothing

It was our original hope that, by treating the choice of word sense as just
another hidden variable in the HMM, word sense disambiguation would be
accomplished as a side effect of EM estimation. In fact, however, there is
no pressure in the model in favor of parameter settings in which occurences
of an ambiguous word are all accounted for by a single word sense. If the
initial parameter settings account for an ambiguous word as a mixture of
word senses, the converged model does likewise.

For example, consider Figure 4. We assume a miniature training corpus,
containing one instance each of four words, meat, apple, bagel, cheese. The
meat is ambiguous, having both sense ESSENCE and sense FLESH. The
training corpus is perfectly accounted for by the weights in Figure 4, and
this is indeed a fixed point of the EM algorithm.

One would like to introduce some pressure toward consolidating word
occurances under a single word sense. Further, one would like the set of word
senses one ends up with to be as closely related as possible. In Figure 4, for
example, one would like word meat to shift as much of its weight as possible
to sense FLESH, not sense ESSENCE.

We have sought to accomplish this in a natural way by smoothing tran-
sition probabilities, as follows. The transition probabilities out of a given
state constitute a probability distribution. At a given iteration of the EM
algorithm, the “empirical” distribution for a given state is the distribution
of counts across outgoing transitions, where the counts are estimated us-
ing the model produced by the previous iteration. (Hence the scare quotes
around empirical. For want of a better term, let us call this distribution
pseudo-empirical.)

For example, assume the parameter settings shown in Figure 4 to be the

13

output of the previous iteration, and assume that each word appears once
in the training corpus. Then the (estimated) count for the path through
transition FOOD — FLESH is 1/2, and the count for the paths through
transitions FOOD — FRUIT, FOOD — BREAD, FOOD — DAIRY,
is 1 each. Hence, the total count for state FOOD is 31/2. Dividing each
transition count by the count for state FOOD yields the pseudo-empirical
probabilities {1/7,2/7,2/7,2/7}.

The pseudo-empirical probabilities would normally be installed as tran-
sition weights in the new model. Instead, we mix them with the uniform
distribution {1/4,1/4,1/4,1/4}. Let p(t) be the pseudo-empirical probabil-
ity of transition ¢, and let u(¢) be the uniform probability of transition .
Instead of setting the new weight for ¢ to p(t), we set it toe u(t)+ (1 —e)p(t).

Crucially, we make the mixing parameter, €, a function of the total
count for the state. Intuitively, if there is a lot of empirical evidence for
the distribution, we rely on it, and if there is not much empirical evidence,
we mix in a larger proportion of the uniform distribution. To be precise,
we compute € as 1/(c+ 1), for ¢ the total count of the state. This has the
desirable property that € is 1 when ¢ is 0, and € decreases exponentially with
increasing c.

It is probably not immediately obvious how smoothing in this manner
helps to prune undesired word senses. To explain, consider what happens
in Figure 4. There are two paths from the root to word meat, one leading
through word sense ESSENCE and the other leading through word sense
FLESH. In the “previous” model (i.e., the weights shown), each of those
paths has the same weight (namely, 1/8), hence each instance of word meat
in the training corpus is taken as evidence in equal parts for word senses
ESSENCE and FLESH.

The difference lies in states COGNITION and FOOD. Words apple,
bagel, cheese, along with half of meat, provide evidence for state FOOD,
giving it a total count of 31/2; but the only evidence for state COGNI-
TION is the other half of meat, giving it a total count of 1/2. The new
distribution for COGNITION has a large admixture of the uniform dis-
tribution, whereas the distribution of FOOD has a much smaller uniform
component.

The large proportion of uniform probability for state COGNITION
causes much of its probability mass to be “bled off” onto siblings of ESSENCE
(not shown, but indicated by the additional outgoing edges from COGNI-
TION). Since none of these sibling are attested in the training corpus, this
makes COGNITION’s fit to the training corpus very poor. Intuitively, this

14

TOP

epsilon=1/2
13 23

COGNITION FOOD epsilon = 3/5
epsilon = 3/4 2 0
1 172 0
FLESH PLANT-PART BREAD DAIRY
z Phd I I
ESSl;NCE 1.7 - l* l*
SO 7 - 1
1 Seasa bagel cheese
meat

Figure 5: Imbalanced Senses

creates pressure for TOP to reduce the weight it apportions to COGNI-
TION and increase its weight for FOOD; doing so improves the model’s
overall fit to the training corpus.

This decreases the relative count for word sense ESSENCE in the next
iteration, increasing the pressure to shift weight from COGNITION to
FOOD. Ultimately, an equilibrium is reached in which most of the count
for word meat is assigned to word sense FLESH. (What prevents a total
shift to word sense FLESH is smoothing at TOP , which keeps a small
amount of weight on COGNITION. In a large hierarchy, this translates to
a vanishingly small amount of weight on ESSENCE.)

3.2 Sense Balancing

In Figure 4, our smoothing method produces the desired bias for the corpus
meat, apple, bagel, cheese. However, in different circumstances the bias
produced is not the desired one. Consider training the hierarchy in Figure 5
on a corpus made up of one token of meat.

The hierarchy in Figure 5 differs from the hierarchy in Figure 4 in that
meat has three senses two of which share a prefix path, i.e., the transition
from TOP to FOOD. When training on the corpus of one token of meat,
2/3 of the count would go down the FOOD side and the other third down
the COGNITION side; thus with respect to the forward-backward algorithm
there is little difference between the current example and the previous one
and thus the two senses of meat under FOOD will be preferred. Intuitively
this is wrong, there is no information in the corpus on which to derive a bias
for any one sense and we would like our parameter settings to reflect this.
In addition, this is also not simply a border case problem, since if, as in the
corpus in Table 2, meat is very frequent, it could easily happen that such

15

TOP

o N

COGNITION FOOD
FLESH PLANT-PART BREAD DAIRY
ESSENCE T | |
<~ . -] v
\\\\,",/’ bagel cheese
meat

Figure 6: Sense Balancing

an a priori bias for certain senses of meat drowns out the bias that should
result from the other words in the corpus.

In concrete terms, the problem is the shared path prefix that exists for
the senses under FOOD, namely the transition from TOP to FOOD. More
abstractly, the problem is that the hierarchy is not balanced with respect
to the senses of meat—if there were another sense under ESSENCE there
would be no problem (see Figure 6).

One can simulate such a phantom sense within the forward-backward
algorithm. (Remember that the forward-backward algorithm is an Expecta-
tion Maximization (EM) algorithm and thus consists of two primary steps:
the Expectation step where, based on the current model and the corpus,
frequencies, or counts, of the events of the model are estimated and the
the Maximization step which consists of a normalization of these frequences
to produce the next parameter settings of the model.) First the count for
the transitions in the prefix path have to be reduced. This can be done by
modifying the E step such that the expectation, E;(Xi_”), for the random
variable, X;_,;, which corresponds to the transition from state ¢ to state j
for a single token of word w, is calculated as follows.

= _ EBu(Xis))
) =)

where Fy,() is the expectation based on the model and corpus and D(j, w)
is the number of unique paths starting at 7 and ending in a state that
can generate w. One then sums over all tokens of the corpus to get the
expectation for the corpus.

The second step is to reduce the probability of the paths to the sister
sense of the phantom sense, e.g., COGNITION— ESSENCE. This can be

16

TOP

) N

COGNITION FOOD PLANT-PART

N7

ESSENCE FLESH

.
meat

Figure 7: Graph with Reentrancy

achieved by increasing the normalization factor used in the M step:

—

Ay = E,(D(r,w) — D(i,w))

where again we focus on the contribution of a single token of a word w and
thus the normalization factor used in the M step would be the sum Z; over
the tokens in the corpus. The state r is the starting state of the model, i.e.,
the state corresponding to the root of the hierarchy. The exception to this
formula occurs when D(r, w) — D (i, w) = 0 in which case A, = B,

There are other ways of modifying the algorithm to simulate the phantom
sense. However this method is easy and efficient to implement since the E
and M steps remain simple local calculations—the only global information
comes through the function d which can be efficiently and easily computed.

Another kind of sense imbalance is shown in Figure 7. this imbalance
can be corrected by further modifying the E step as follows:

iy = Pw(Xis)
Bl = DG wt)

where U(j) is the number of unique paths up to the root from j.

3.3 Length and Width Balancing

Most of the example hierarchies/models we have considered so far have been
balanced with respect to length and width, i.e., the length of the paths to
the generating states has been uniform and the number of transitions out of
a state has been uniform across states. It turns out that uniform length and
width are important characteristics with respect to our modified forward-
backward algorithm: shorter paths are preferred to longer ones (see Figure 8)

17

ABSTRACT-OBJECT FOOD

\ 1
i

/

/

/

’

COGNITION

/
/
/
’
\ i
/
/
/

ESSENCE K

N /
N
EN4
meat

Figure 8: Path on the Right is Preferred Due to its Shorter Length

TOP

O\

COGNITION FOOD
ESSENCE FLESH
s
meat

Figure 9: Path on the Right is Preferred Due to its Relatively Narrow
Distributions

and paths that go through states with few exiting transitions are preferred
to ones that go through states with many (see Figure 9). In fact, short paths
are preferred to longer ones by the standard forward-backward algorithm,
since in an HMM the probabilities of events in a sequence are multiplied to
get the probability of the sequence as a whole. Width only comes into play
when introduces the smoothing. Remember that in our smoothing, we mix
in the uniform probability. Consider the transitions coming out of the state
COGNITION in Figure 9; there are four transitions and thus the uniform
probability would be 1/4. In contrast the transitions coming out of the state
FOOD in the same figure number only 2 and thus the uniform distribution
would be 1/2. Thus, if their are many transitions the probability mixed for
the uniform distribution will be smaller than if their where fewer transitions.

We can solve the problem by balancing the hierarchy: all paths that

18

result in generating a symbol should be of the same length and all distri-
butions should contain the same number of members. As in the previous
section, we can simulate this balancing by modifying the forward-backward
algorithm.

First, to balance for width, the smoothing can be modified as follows:
instead of mixing in the uniform probability for a particular parameter,
always mix in the same probability, namely the uniform probability of the
largest distribution, @z, (i.e., the state with the largest number of exiting
transitions, in Figure 9, this maximum uniform probability would be 1/4).
Thus the smoothing formula becomes € 45+ (1 —¢)p(¢). This modification
has the effect that it is as if there are always the same number of transitions
out of a class. Width balancing for emission parameters is performed in an
analogous fashion.

Let us turn to length balancing. Conceptually, in order to balance for
length, extra transitions and states need to be added to short paths so
that they are as long as the maximum length path of the hierarchy. It
should be noted that we are only concerned with paths that end in a state
that generates words. The extension of short paths can be simulated by
multiplying the probability of a path by a factor that is dependent on its
length:

P/sz(p) _ Prob(p)umal?(lengthmax—length(p))

This additional factor can be worked into the forward and backward
variable calculations so that there is no loss in efficiency. It is, thus, as if
lengthpqa. — length(p) states have been added and that each of these states
has ,,,,~" exiting transitions.

The gray portions of Figures 10 and 11 illustrate the effect of width and
length balancing. Note that these balancing extensions force us to allow
final states to generate €. For example, that states introduced for width
balancing are final and ¢ generating.

3.4 Some Final Comments on Parameter Estimation

We started this section by showing why the straightforward application of
an EM algorithm, namely the forward-backward algorithm, would not sense
disambiguate the input words as desired. Thus, we introduced a type of
smoothing which produced the desired bias in the example at hand. Then
we showed how this smoothing when used on certain graphs produced un-
wanted biases which then necessitated further modifications in the E and M

19

COGNITION FOOD
ESSENCE FLESH
g

meat

Figure 10: Width Balancing

TOP

N

ABSTRACT-OBJECT

COGNITION

Figure 11: Length Balancing

20

steps of the algorithm. It is important to note that these modifications re-
sult in a version of the forward-backward algorithm with unknown behavior.
One of the advantages of EM algorithms has been lost: it has been proven
that they converge to local maxima with respect to the likelyhood of the
training corpus [?]. It is conceivable that an analogous proof of desirable
convergence properties could be constructed which would incorporate the
smoothing extension. However, it is unlikely that the smoothing combined
with the balancing extensions produce an algorithm with any such conver-
gence properties. This is because the balancing extensions introduce paths
that do not generate any observable word and, because of the smoothing,
these paths will receive non-zero probability. Thus, the weights for ob-
servable symbols that the model defines do not sum to 1. The situation
is thus analogous to the one for stochastic attribute-value grammars when
trained using the straightforward extension of the inside-outside algorithm
described in [?] where it is shown that the inside-outside algorithm does not
converge to local maxima with respect to the likelyhood of the training cor-
pus. Furthermore, we have observed, for some training corpora, an osilating
behaviour in the cross entropy with the empirical distribution from iteration
to iteration.

One possible conclusion that could be drawn from the foregoing is that
HMM’s are not the right kind of stochastic model to be used in conjunction
with “is-a” hierarchies: in other words HMM'’s do not match the semantics of
the “is-a” hierarchies. The need for smoothing and balancing, as described
above, is a symptom of the mismatch. Perhaps a better approach would be
to work with log linear model, since log linear models do not calculate the
probability of an observation as a sequence of events but instead as a set of
properties. Log linear models have the following form

Prob(w) = — M) 432 f2(0) 44X ()

where 7 is a normalizing factor, f;(w) denotes the frequency of the property
1 with respect to w, and the A values are the parameters of the model and
denote the weights for the properties of the words. For our purposes such a
model would generate a distribution over words w, the properties would be
class membership, and thus the frequency values would be either 0 or 1.

If having all classes as properties proves to be inefficient or otherwise
undesirable, one could employ a greedy property selection algorithm, as in
[?], where one would only add those features that correspond to classes that
cover as many words in the training set as possible and at the same time

21

are as small as possible. Such an algorithm would produce non-optimal
solutions, in many cases but note that the problem of picking an optimal
set of classes with respect to a corpus is similar to the set-covering problem
which is NP-complete. Such an algorithm would try to pick properties to
add to the model that make the largest improvement in the ability of the
model to maximize the probability of the training corpus.

Once the properties have been selected, one could use an EM algorithm
to train the model on the training corpus on word tokens. Since such train-
ing would be an instance of training with incomplete data, the results and
methods described in [?] would be relevant.

4 Using the Trained Models

Although problems with parameter estimation tarnish HMM’s appeal, using
trained HMM’s is both straightforward and efficient. In this section we will
show how to calculate three distributions which have numerous applications.
First, however, let us review Figure 1. The input to the system consists of
a semantic hierarchy and a set of corpora, one for each predicate-role pair.
For a given predicate-role pair, such as eat-OB.J, a corpus might look like
the word in Table 2. The output of the system is then a trained HMM which
represents the selectional preferences of the particular predicate-role pair.
In the following we will make use of a number of functions:

ai(i) = Prob(w, ¢ = S;)
Be(t) = Prob(w|g = S;)
(i) = Prob(q: = S;|w)

where w is the word generated, S; is a state in the HMM, and ¢, is the state
which the HMM finds itself in after ¢ transitions.

The v and 3 values can be computed efficiently using dynamic program-
ming techniques. They provide the basis for other calculations:

Prob(w) = po(TOP)

(0 = _O};fﬂl)l)ﬁ(gg)

We denote the probability function of an HMM trained on data from a

particular predicate-role pair as Pr‘)bpred-mle'

22

4.1 Word Sense Disambiguation

We have discussed at length the problem of disambiguating the input corpus
during training. Here we will discuss how to calculate a distribution over
word senses given a trained HMM.

Consider the sentence

He splattered OJ on the table.

The noun OJ is ambiguous: it could refer to the former star running back
of the Buffalo Bills or to orange juice. However, due to the selectional
preferences of splatter-OBJ, one would expect that the orange juice reading
would be more likely.

We would like to have a distribution over the senses of the word based on
the predicate-slot pair. This can be expressed in terms of the HMM trained
on the corpus corresponding to the predicate-slot pair as follows.

lma:r

Prob(sense|word, pred-slot) = PrObpred-role(SS@nse|'word) = Z Ye(Ssense)
t=0

Where [,,,4: is the length of the longest path in the HMM. Remember that
word senses correspond to classes of the semantic hierarchy which in turn
correspond to states in an HMM. In words, the probability of a sense is the
probability of generating the word from the state which corresponds to that
sense. In Section 5, we will present results based on this calculation.

4.2 Producing Distributions over Words

For many applications, one needs to know how likely one word is as opposed
to another. For example, consider translating the german sentence:

Machen wir einen Termin aus, oder?

into English and let us assume that we are trying to decide which transla-
tion of Termin is most appropriate given our translation of the rest of the

sentence:3

Let’s arrange a time-slot, ok?
date
appointment

We would like to thank Detlef Prescher for providing us with this example which
comes from the Verbmobil project domain.

23

It would be useful to know which word, time-slot, date, or appointment,
is the most likely in this english sentence. Both multilingual information
retrieval and speech recognition have similar needs.

The probability of a word given a predicate-slot pair is simply the proba-
bility that the HMM for that pair generates this word. As mentioned above,
this is the g value at time 0 for the TOP class or more intuitively it is the
sum of the probabilities of all the paths through the HMM that result in
the word being generated.

Prob(word|pred-slot) = Probpred_slot('word) = Go(SToP)

4.3 Produce Traditional List of Classes

Consider the HMM in Figure 12 where transitions have been added from
all leaf states to the root state. Our HMM’s, when extended in this way,
turn out to be ergodic, as shown in Appendix A, and thus the probability
of being in a particular state at a time ¢ converges to a single value as
t approaches co. These steady-state probabilities can be put entirely in
terms of the parameters of the model as shown in Appendix B. Thus,
once an HMM has been trained, the steady state probabilities can be easily
calculated. Because of the correspondence between states and classes, these
steady state distributions can be interpreted as a distribution over classes.

Prob(class|pred-slot) = tliglo PTObpred-slot-looped(sdﬂss)

One can then train background and foreground models as defined in Sec-
tion 1 and then, following Resnik, use pointwise divergence between the
foreground and background model class distribution to provide selectional
preferences defined in terms of weights on classes.

Many natural language processing applications have been built to make
use of selectional preferences represented as a list of semantic classes. And
thus such a system would be useful for automatically producing selectional
preferences preferences for words in a new domain.

5 Evaluation

5.1 Word Sense Disambiguation

As was described above, distributions over word sense can be calculated
from trained HMM’s. The evaluate described here based on that described

24

TOP

C = COGNITION

food

ESSENCE FLESH FRUIT
/x\\ ,// /A\
4 S Phd / \
// \\ // // \\
//) LN ’ 1
core meat appl e orange

Figure 12: HMM Used for Calculating Steady State State Probabilities

in [4].4

Resnik started with the UPenn Tree Bank parses of the Brown Corpus
and the Semcor WordNet Sense tagging of two-eighths of the Brown Corpus.
First he estimated distibutions over WordNet classes for each verb which
occurred more than once. And then computed the divergence between these
distributions and a background distribution. The 100 verbs with the largest
divergence were selected. Training corpora were extracted for each verb from
the six-eighths of the Brown Corpus which were not part of Semcor using the
UPenn Tree Bank parses to find the heads of relevant complements. Here
we will only be concerned with the corpora corresponding to the tokens that
filled the direct object position of the verbs. The test corpora were similarly
extracted except that the Semcor two-eighths of the Brown Corpus were
used. In addition, the Semcor sense tagging for each complement head
token was also retained.

For each of the 100 verbs we trained an HMM model based on the Word-
Net hierarchy using the training corpora described above. Then we used the
Prob red-role(ssensemord) described above to do word sense disambigua-
tion for the tokens of the test corpora. The results are presented in Table 3.

In addition, to training corpora derived from the Brown corpus, we made
use of training corpora derived from the British National Corpus which we

*We would like to thank Philip Resnik for providing us with the training and test data
which he made use of in the above mentioned work.

25

Method Brown Corpus Training Set | BNC Training Set
Random 28.5% 28.5%

First Sense 82.8% 82.8%
Resnik 44.3%

HMM unbalanced 35.6% 36.5%
HMM balanced 42.3% 54.2%

HMM Brown BG-model only 46.7%
HMM BNC BG-model only 42.2%

Table 3: Word Sense Disambiguation Results

parsed using the Cass finite-state parser [2].

References

(1]

[2]

S. Abney. Partial parsing via finite-state cascades. Natural Language
FEngineering, 2(4), 1996.

Steven Abney. Partial parsing via finite-state cascades. In John Carroll,
editor, Proc. Robust Parsing Workshop, ESSLLI Summer School 1996,
pages 8-15, 1996.

L. R. Rabiner. A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257-285,
February 1989.

P. Resnik. Selectional preference and sense disambiguation. In Proceed-
ings of the ANLP-97 Workshop: Tagging Text with Lexical Semantics:
Why, What, and How?, Washington, D.C., 1997.

P. S. Resnik. Selection and Information: A Class-Based Approach to
Lezical Relationships. PhD thesis, University of Pennsylvania, Philade-
phia, PN, 1993.

F. Ribas. On learning more appropriate selectional restrictions. In Pro-
ceedings of the 7th Conference of the Furopean Chapter of the Associa-
tion for Computational Linguistics., Dublin, Ireland, 1995.

26

A Appendix A: Proof of Ergodicity

We follow [?] in uses the following notation:
pi;(n) is the probability of going from state i to state j in n steps;
P;(n) is the probability of being in a state j after n time clicks.
The Ergodic Theorem as stated in [?] on page 170 is

“Let My be the matrix of k-step transition probabilities of a
markov process with a finite number of states Sy,.59, ..., Sp. If
there exists an integer k£ such that the terms p;;(k) of the matrix
My, satisfy the relation

i, palk) =8> 0

for at least one column of My, then the equalities
7}1—>I%op”(n) =Pj=1,2,..,m; ZP]- =1
j

are satisfied.”
He goes on to say that

“The restriction

i, palk) =8> 0

for at least one column of M} simply requires that there be at
least one state S; and some number %k such that it be possible
to get to S; from every state in exactly k& transitions. This
requirement happens to correspond to the conditions that the
recurrent states of the system form a single chain and that there
be no periodic states.”

We will provide a £ and an S; for our HMM’s extended by leaf-root
transitions as displayed in Figure ?7. The strategy of the proof will be to
use the following facts about our HMM’s:

e every state can get to the root in one or two transitions because of the
shape of the branches,

e loops from the root back to itself exist of size 3,4,5, ..., lengthpq.:+1,

27

where length,, .. is the longest path in the unextended HMM. Thus, for a
k such that 5 < k < length,q.: + 1, every state can get to the root and
then use the £ — 1 or & — 2 loop to make a transition to root in k steps.
In the following r is the root or top state. In addition, we assume that
length,, .. > 3.

Due to the shape of our HMM’s branches and the effects of our smooth-
ing:

prr(n) > 0]|for|ln=3,4,...,lengthye: + 1

Note also that due to the leaf-root transitions
pir(1) > Oflor||pir(2) > 0i =1,2,...,m.

Now we can specify S; and k: S; is r. Remember that what we want to
do is specify a k such that one can get to the root state in exactly k steps
from every state S; with a non-zero probability. As it turns out, any k such
that 5 < k < length,,q.. + 1 will work.

Because of the short paths for every state back to the root and because
of the loops of various lengths:

For all 4
if p;r (1) > 0 then p;.(1)p,-(k — 1) > 0 and thus p;. (k) > 0
if p;r(2) > 0 then p;(2)p,r(k —2) > 0 and thus p;. (k) > 0

q.e.d.

B Appendix B: Derivation of Steady State Equa-
tions

N = the number of states

r = root state steady state probability

i = ith state steady state probability

g = a generating (leaf) state steady state probability
i_j = the transition probability from state i to j

The system of equations:

28

For each state in N (excluding r)

1. j = SUM i * i_j
i

The probability of a state is the sum over all states with immediate
transitions to it.

2. r=5UMg
g

The probability of the root state is the sum of the probabilities of
the leaf states since forall g, g.r = 1.

3. 1 =S8UM i1
i

The steady state probabilities of the states must sum to 1.

We want to solve these equations stating the steady state
probabilities in terms of the transitions probabilities.

Since there is a path from the root to i for every non-zero i_j in
the equations of form (1), we can rewrite each equation as follows:

4. j =1 x SUM A(a,j)
a

where
A(a,j) = PRODUCT i_q
and the product includes all transitions along the path a from r to j.
The equations of (4) say that the probability of state is the
sum of the probabilities of the paths from the root to state times the

probability of the root.

You get from (1) to (4) by substituting successively for the state
probability i with the equation for i of form (1).

29

The next step is to solve for r. Take the equations of (4) and
substitute them into (3), factor out r, and divide through by the sum
which yields:

5. r =1/(1 + SUM SUM A(a,i)) where i varies over all states except r
i a

Let

Z =1 + SUM SUM A(a,i) where i varies over all states except r
i a

Now we can use this value of r plus the equations of (4) to derive the
steady state probabilities of the other states;

6. j = (SUM A(a,i))/Z

a

One can make the calculation of Z a bit more efficient by noting that
if you take the equations of (4) for the g states and substitute them
into equation (2), and then factor out r, you get the following:

7. 1 = SUM SUM A(a,g) where g varies over all leaf states
g a

This means that

Z = 2 + SUM SUM A(a,i) where i varies over NON-leaf states except r
i a

30

