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Abstract. This paper presents a machine learning system for parsing natural language that
learns from manually parsed example sentences, and parses unseen data at state-of-the-art ac-
curacies. Its machine learning technology, based on the maximum entropy framework, is highly
reusable and not specific to the parsing problem, while the linguistic hints that it uses to learn
can be specified concisely. It therefore requires a minimal amount of human effort and linguistic
knowledge for its construction. In practice, the running time of the parser on a test sentence is
linear with respect to the sentence length. We also demonstrate that the parser can train from
other domains without modification to the modeling framework or the linguistic hints it uses to
learn. Furthermore, this paper shows that research into rescoring the top 20 parses returned by
the parser might yield accuracies dramatically higher than the state-of-the-art.
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1. Introduction

The task of a natural language parser is to take a sentence as input and return a
syntactic representation that corresponds to the likely semantic interpretation of
the sentence. For example, some parsers, given the sentence

I buy cars with tires

would return a parse tree in the format:

S
NP VP
|
I b/\NP
uy
/\
cars PP
P
with NP

tires

* The author is now working at the IBM TJ Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598



where the non-terminal labels denote the type of phrase (e.g., “PP” stands for
prepositional phrase). Accurate parsing is difficult because subtle aspects of word
meaning—from the parser’s view—dramatically affect the interpretation of the sen-
tence. For example, given the sentence

I buy cars with money

a parser might propose the following two parses

e (Unlikely:) S
NP VP
|
I buy NP
cars PP
with NP
|
money
e (Likely:) S
NP VP
|
! /[\
buy NP PP

cars with NP
|

money

Both parses are grammatical, in the sense that a typical context free grammar for
English will allow both structures, but only one corresponds to the likely inter-
pretation of the sentence. A parser actually needs detailed semantic knowledge of
certain key words in the sentence in order to distinguish the likely parse; it needs
to somehow know that with money refers to buy and not cars.

The parsers which currently show superior accuracies on freely occurring text are
all classified as statistical or corpus-based, since they automatically learn to approx-
imate syntactic and semantic knowledge for parsing from a large corpus of text,
called a treebank, that has been manually annotated with syntactic information. In
order to evaluate the accuracy of a statistical parser, we first train it on a subset
of the treebank, test it on another non-overlapping subset, and then compare the
labelled syntactic constituents it proposes with the labelled syntactic constituents
in the annotation of the treebank. The labelled constituent accuracies of the best
parsers approach roughly 90% when tested on freely occurring sentences in the Wall
St. Journal domain.



S{buys}
NP{man} VP{buys}
N
The man
buys NP{cars}
fast cars PP{with}
with  NP{tires}
<N
big tires

Figure 1. A parse tree annotated with head words

2. Previous Work

Recent corpus-based parsers differ in the simplicity of their representation and
the degree of supervision necessary, but agree in that they resolve parse structure
ambiguities by looking at certain cooccurrences of constituent head words in the
ambiguous parse. A head word of a constituent, informally, is the one word that
best represents the meaning of the constituent, e.g., Figure 1 shows a parse tree
annotated with head words. Parsers vary greatly on how head word information
is used to disambiguate possible parses for an input sentence. Black et al. (1993)
introduces history-based parsing, in which decision tree probability models, trained
from a treebank, are used to score the different derivations of sentences produced
by a hand-written grammar. Jelinek et al. (1994), Magerman (1995) also train
history-based decision tree models from a treebank for use in a parser, but do not
require an explicit hand-written grammar. These decision trees do not look at
words directly, but instead represent words as bitstrings derived from an automatic
clustering technique. In contrast, Hermjakob and Mooney (1997) use a rich seman-
tic representation when training decision tree and decision list techniques to drive
parser actions.

Several other recent parsers use statistics of pairs of head words in conjunction
with chart parsing techniques to achieve high accuracy. Collins (1996, 1997) uses
chart-parsing techniques with head word bigram statistics derived from a treebank.
Charniak (1997) uses head word bigram statistics with a probabilistic context free
grammar, while Goodman (1997) uses head word bigram statistics with a proba-
bilistic feature grammar. Collins (1996), Goodman (1997), Charniak (1997), Collins
(1997) do not use general machine learning algorithms, but instead develop spe-
cialized statistical estimation techniques for their respective parsing tasks.

The parser in this paper attempts to combine the advantages of other approaches.
It uses a natural and direct representation of words in conjunction with a general



Table 1. Tree-Building Procedures of Parser

Pass Procedure Actions Description

First Pass TAG A POS tag in tag set Assign POS Tag to word
Second Pass CHUNK Start X, Join X, Other Assign Chunk tag to

POS tag and word
Third Pass BUILD Start X, Join X, where Xisa Assign current tree to
constituent label in label set start a new constituent,
or to join the previous

one

CHECK Yes, No Decide if current con-

stituent is complete

machine learning technique, maximum entropy modeling. We argue that the suc-
cessful use of a simple representation with a general learning technique is the com-
bination that both minimizes human effort and maintains state-of-the-art parsing
accuracy.

3. Parsing with Maximum Entropy Models

The parser presented here constructs labelled syntactic parse trees with actions
similar to those of a standard shift-reduce parser. (Many other parsing techniques
exist for natural language, see Allen (1995) for an introduction.) The sequence of
actions {a; ...a,} that construct a completed parse tree T are called the derivation
of T'. There is no explicit grammar that dictates what actions are allowable; instead,
all actions that lead to a well-formed parse tree are allowable and maximum entropy
probability models are used to score each action. The maximum entropy models
are trained by examining the derivations of the parse trees in a treebank. The
individual scores of the actions in a derivation are used to compute a score for the
whole derivation, and hence the whole parse tree. When parsing a sentence, the
parser uses a search procedure that efficiently explores the space of possible parse
trees, and attempts to find the highest scoring parse tree.

Section 3.1 describes the actions of the tree-building procedures, section 3.2 de-
scribe the maximum entropy probability models, and section 3.3 describes the al-
gorithm that searches for the highest scoring parse tree.

8.1. Actions of the Parser

The actions of the parser are produced by procedures, that each take a derivation
d = {a1...a,}, and predict some action a,y; to create a new derivation d' =
{a1...any1}. The actions of the procedures are designed so that any possible
complete parse tree T has exactly one derivation.



The procedures are called TAG, CHUNK, BUILD, and CHECK, and are applied in
three left-to-right passes over the input sentence; the first pass applies TAG, the
second pass applies CHUNK, and the third pass applies BUILD and CHECK. The
passes, the procedures they apply, and the actions of the procedures are summarized
in Table 1. Typically, the parser explores many different derivations when parsing
a sentence, but for illustration purposes, Figures 2—-8 trace one possible derivation
for the sentence “I saw the man with the telescope”, using the consituent labels
and part-of-speech tags of the University of Pennsylvania treebank (Marcus et al.,
1994).

The actions of the procedures are scored with maximum entropy probability mod-
els that use information in the local context to compute their probabilities. (A more
detailed discussion of the probability models will occur in Section 3.2.) Using three
passes instead of one pass allows the the use of more local context. For example,
the model for the CHUNK procedure will have the output from TAG in its left and
right context, and the models for the BUILD and CHECK procedures will have the
output of TAG and CHUNK and their left and right contexts. If all these procedures
were implemented in one left-to-right pass, the model for CHUNK would not have
the output of TAG in its right context, and the models for BUILD and CHECK would
not have the output of TAG and CHUNK in their right context.

8.1.1. Fuirst Pass The first pass takes an input sentence, shown in Figure 2, and
uses TAG to assign each word a part-of-speech (POS) tag. The result of applying
TAG to each word is shown in Figure 3. The tagging phase resembles other stand-
alone statistical taggers in the literature (Weischedel et al., 1993) but is integrated
into the parser’s search procedure, so that the parser does not need to commit to
a single POS tag sequence.

8.1.2. Second Pass The second pass takes the output of the first pass and uses
CHUNK to determine the “flat” phrase chunks of the sentence, where a phrase is
“flat” if and only if it is a constituent whose children are not constituents. Starting
from the left, CHUNK assigns each (word,POS tag) pair a “chunk” tag, either Start
X, Join X, or Other, where X is a constituent label. Figure 4 shows the result after
the second pass. The chunk tags are then used for chunk detection, in which any
consecutive sequence of words w., ...wy (m < n) are grouped into a “flat” chunk
X if w,, has been assigned Start X and wWy,41 ...w, have all been assigned Join
X. The result of chunk detection, shown in Figure 5, is a forest of trees and serves
as the input to the third pass.

The granularity of the chunks, as well as the possible constituent labels of the
chunks, are determined from the treebank that is used to train the parser. Examples
of constituents that are marked as flat chunks in the Wall St. Journal domain of
the Penn treebank include noun phrases such as a nonezecutive director, adjective
phrases such as 61 years old, and quantifier phrases such as about $§ 370 million.

The chunking in our second pass differs from other chunkers in the literature
(Ramshaw and Marcus, 1995; Church, 1988) in that it finds chunks of all constituent



Table 2. Comparison of BUILD and CHECK to operations of a shift-reduce parser

Procedure Actions Similar Shift—-Reduce Parser Action

CHECK No shift

CHECK Yes reduce a, where o is CFG rule of proposed constituent
BUILD Start X, Join X Determines a for subsequent reduce operations

I saw the man with the telescope

Figure 2. Initial Sentence

VBD DT NN IN DT NN
| | | | | |

saw the man with the telescope

Figure 8. The result after First Pass

Start NP Other Start NP Join NP Other Start NP Join NP

| | | | | | |
PRP VBD DT NN IN DT NN

I saw the man with the telescope

Figure 4. The result after Second Pass

NP VBD NP IN NP

| | N | TN

PRP saw DT NN with DT NN
| I l | |

I the man the telescope

Figure 5. The result of chunk detection

labels, and not just noun phrase chunks. Our multi-pass approach is similar to the
approach of the parser in Abney (1991), which also first finds chunks in one pass,

and then attaches them together in the next pass.



Start S Start VP Join VP IN NP
| | | | Py
NP VBD NP with DT NN
| | N | |
PRP saw D|T N|N the telescope
|
I the man

Figure 6. An application of BUILD in which Join VP is the action

Start S ? IN NP
N|P Start VP Join VP With D|T N|N
PRP V]|3D N|P the telescope

| o
saw DT NN
| |

the man

Figure 7. The most recently proposed constituent (shown under ?)

Start S Start VP Join VP ? NP
| | | | N
NP VBD NP IN DT NN
| | . | | |
PRP saw DT NN with the telescope
| | |
1 the man

Figure 8. An application of CHECK in which No is the action, indicating that the proposed con-
stituent in figure 7 is not complete. BUILD will now process the tree marked with ?. The derivation
of this partially completed tree is { PRP, VBD, DT, NN, IN, DT, NN, Start NP, Other, Start
NP, Join NP, Other, Start NP, Join NP, Start S, no, Start VP, no, Join VP, no }.



8.1.83. Third Pass The third pass always alternates between the use of BUILD and
CHECK, and completes any remaining constituent structure. BUILD decides whether
a tree will start a new constituent or join the incomplete constituent immediately
to its left. Accordingly, it annotates the tree with either Start X, where X is any
constituent label, or with Join X, where X matches the label of the incomplete
constituent to the left. BUILD always processes the leftmost tree without any Start
X or Join X annotation. Figure 6 shows an application of BUILD in which the
action is Join VP. After BUILD, control passes to CHECK, which finds the most
recently proposed constituent, and decides if it is complete. The most recently
proposed constituent, shown in Figure 7, is the rightmost sequence of trees ¢, . . .t,
(m < n) such that ¢, is annotated with Start X and ¢y, 41 ...t, are annotated with
Join X. If cHECK decides yes, then the proposed constituent takes its place in the
forest as an actual constituent, on which BUILD does its work. Otherwise, the
constituent is not finished and BUILD processes the next tree in the forest, ¢,41.
We force CHECK to answer no if the proposed constituent is a “flat” chunk, since
such constituents must be formed in the second pass. (Otherwise, flat chunks would
not have unique derivations.) Figure 8 shows the result when cHECK looks at the
proposed constituent in Figure 7 and decides No. The third pass terminates when
CHECK 1s presented with a constituent that spans the entire sentence.

A complete derivation for an n word sentence consists of n actions of TAG, n
actions of CHUNK, and alternating actions of BUILD and CHECK. For reference
purposes, the derivation of the partially completed tree in Figure 8 is included in
the caption. The constituent labels produced by BUILD, i.e., the types of X in the
Start X and Join X actions, are determined from the treebank that is used to
train the parser.

Table 2 compares the actions of BUILD and CHECK to the operations of a standard
shift—-reduce parser. The No and Yes actions of CHECK correspond to the shift and
reduce actions, respectively. The important difference is that while a shift-reduce
parser creates a constituent in one step (reduce a), the procedures BUILD and
CHECK create it over several steps in smaller increments.

While the use of maximum entropy models together with shift-reduce parsing
is novel (to our knowledge), shift-reduce parsing techniques have been popular in
the natural language literature. Aho et al. (1988) describe shift-reduce parsing
techniques (for programming languages) in detail, Marcus (1980) uses shift—reduce
parsing techniques for natural language, and Briscoe and Carroll (1993) describe
probabilistic approaches to LR parsing, a type of shift—reduce parsing. Other recent
machine learning approaches to shift-reduce parsing include Magerman (1995) and
Hermjakob and Mooney (1997).

8.2.  Probability Models that Use Context to Predict Parsing Actions

The parser uses a history-based approach (Black et al., 1993), in which a probability
px(alb) is used to score an action a of procedure X € { TAG, CHUNK, BUILD,
CHECK }, depending on the partial derivation b (also called a contezt or history)
that is available at the time of the decision. The conditional probability models



px are estimated under the maximum entropy framework. The advantage of this
framework 1s that we can use arbitrarily diverse information in the context b when
computing the probability of an action a of some procedure X.

While any context b is a rich source of information, it is difficult to know ezactly
what information is useful for parsing. However, we would like to implement the
following inexact intuitions about parsing:

e Using constituent head words is useful.

e Using combinations of head words is useful.
e Using less-specific information is useful.

e Allowing limited lookahead is useful.

The above intuitions are implemented in the maximum entropy framework as fea-
tures, and each feature is assigned a “weight” which corresponds to how useful it
1s for modeling the data. We will later show that a mere handful of guidelines are
sufficient to completely describe the feature sets used by the parsing models.

8.2.1. The Marimum Entropy Framework The maximum entropy frameworkis a
clean way for experimenters to combine evidence thought to be useful in modeling
data. While the exact nature of the evidence is task dependent, the framework
itself is independent of the parsing task and can be used for many other problems,
like language modeling for speech recognition (Lau et al., 1993; Rosenfeld, 1996)
and machine translation (Berger et al., 1996). The basic unit of evidence in this
framework 1s a feature, a function f:

fiAxB—{01} (1)

where A is the set of possible actions, and B is the set of possible contexts. A
feature, given an (a,b) pair, captures any information in b that might be useful for
predicting a. Given a training set 7 = {(a1,b1),...,(a@n,bn)}, define $(a,b) as the
observed probability of the pair (a,b) in the training set, and define E;f; as the
observed expectation of feature f;:

Eﬁfj = Zﬁ(a’ b)fj(a" b)

a,b

Intuitively, E;f; is just the normalized count of the feature f; in the training set 7.
(We will later describe in Section 3.2.3 how to obtain training sets from a treebank.)
We desire a conditional probability model p* that is consistent with the observed
expectation of f;, but also one that is likely to generalize well to unseen data. The
Principle of Maximum Entropy (Jaynes, 1957) recommends that we choose the
model p* with the highest entropy over the set of those models that are consistent
with the observed expectations, i.e., the model is that is maximally noncomittal
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beyond meeting the observed evidence. We follow the conditional maximum entropy
framework described in Berger et al. (1996), which chooses p* such that

p’ = argmax H(p)
pEP

P = {p|E,f; =E~fj j=1...k}
Ef; = Zp (alb)f;(a, b)
H(p) = —ZP (alb) log p(alb)

where fi ... fr are the features in the model, $(b) is the observed probability of a
context b in the training set, P is the set of consistent models, E, f; is the model’s
expectation of f;, and H(p) is the entropy of the model p, averaged over the contexts
of the training set. The form of the solution for p* is

P (alh) = ﬁ I]o? )

k
z2() = S [P

where ay ...y are the parameters of the model (o; > 0), and Z(b) is a normaliza-
tion factor.

There is an interesting relationship between maximum likelihood estimates of
models of form (2) and maximum entropy models. It also the case that:

*

p* = argmaxL(q)

q€Q
Q = {r|p(alp) = ﬁ L@ty
L(p) = ) #(a,b)logp(alb)

(a,b)

where @ is the set of models of form (2), and where L(p) is proportional to
the log-likelihood of the training set according to the model p. Therefore p* =
argmax,co L(g) = argmax,.p H(p) and p* can be viewed under both the maxi-
mum entropy and maximum likelithood frameworks: it maximizes the entropy over
the set of consistent models P and maximizes likelihood over the set of models of
form (2), @. The duality is appealing since as a maximum entropy model, p* will
not assume anything beyond the evidence, and as a maximum likelihood model, p*
will have a close fit to the observed data. The maximum entropy framework and its
duality with maximum likelihood estimation are discussed in more detail elsewhere
(Berger et al., 1996; Della Pietra et al., 1997).
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An advantage of this framework is that there are no independence assumptions or
inherent restrictions on the features beyond the form (1). Therefore, experimenters
can add arbitrarily diverse or complicated features to the parsing models. This
advantage is significant because informative features in parsing (described below in
section 3.2.2) are often inter-dependent by nature.

8.2.2. PFeatures All evidence in the maximum entropy framework must be ex-
pressed through features, and any feature is implemented with a function cp : B —
{true, false}, called a contertual predicate. A contextual predicate checks for the
presence or absence of useful information in a context b € B and returns true or
false accordingly. In this implementation of the maximum entropy framework, every
feature f has the format

1 if cp(b) = true && a = o
flab) = { 0 otherwise
and therefore expresses a cooccurrence relationship between some action a’ and
some linguistic fact about the context captured by cp.

The contextual predicates for a procedure X are denoted by CPx, and Table 3
specifies the guidelines, or templates, for creating CP x, where X € { TAG, CHUNK,
BUILD, CHECK }. The templates are only linguistic hints, in that they do not specify
the information itself, but instead, specify the location of the useful information in
a context b. The templates use indices relative to the tree that is currently being
modified. For example, if the current tree is the 5th tree, cons(—2) looks at the
constituent label, head word, and start/join annotation of the 3rd tree in the forest.
The actual contextual predicates in CP x are obtained automatically, by recording
certain aspects of the context (specified by the templates) in which procedure X
was used in the derivations of the trees in the treebank. For an example, an actual
contextual predicate cp € CPpuyiLp, derived (automatically) from the template
cons(0), might be

ep(b) = { true if the Oth tree of b has label “NP” and head word “he”

false otherwise

In order to obtain this predicate, there must exist a derivation in the manually
parsed example sentences in which BUILD decides an action in the presence of some
partial derivation b, such that the Oth tree of b had a constituent label “NP” and
head word “he”. Constituent head words are found, when necessary, with the
algorithm in Black et al. (1993), Magerman (1995).

Contextual predicates which look at head words, or especially pairs of head words,
may not be reliable predictors for the procedure actions due to their sparseness in
the training set. Therefore, for each lexically based contextual predicate, there also
exist one or more corresponding less specific contextual predicates which look at the
same context, but omit one or more words. For example, the templates cons(0, 1*),
cons(0*, 1), cons(0*, 1*) are the same as cons(0, 1) but omit references to the head
word of the 1st tree, the Oth tree, and both the 0th and 1st tree, respectively.
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The less specific contextual predicates should allow the model to provide reliable
probability estimates when the words in the history are rare. Less specific predicates
are not enumerated in Table 3, but their existence is indicated with a * and T. The
default predicates in Table 3 return true for any context and are the least specific
(and most frequent) predicates; they should provide reasonable estimates when the
model encounters a context in which every other contextual predicate is unreliable.

The contextual predicates attempt to capture the intuitions about parsing in-
formation discussed earlier. For example, predicates derived from templates like
cons(0) look at constituent head words, while predicates derived from templates
like cons(—1, 0) look at combinations of head words. Predicates derived from tem-
plates like cons(—1*,0) look at less specific information, while predicates derived
from templates like cons(0, 1, 2) use limited lookahead. Furthermore, the informa-
tion expressed in the predicates is always local to where the parsing action is taking
place. The contextual predicates for TaG, discussed elsewhere (Ratnaparkhi, 1996),
look at the previous 2 words and tags, the current word, and the following 2 words.
The contextual predicates for CHUNK look at the previous 2 words, tags, and chunk
labels, as well as the current and following 2 words and tags. BUILD uses head word
information from the previous 2 and current trees, as well as the following 2 chunks,
while CHECK looks at the surrounding 2 words and the head words of the children
of the proposed constituent. The intuitions behind the contextual predicates are
not linguistically deep, and as a result, the information necessary for parsing can
be specified concisely with only a few templates.

8.2.8. Traiming Events The contextual predicates for a procedure X are used to
encode the derivations in the treebank as a set of training events 7x = { (a1, b1),

.., (an,bn) }. Each (a,b) € Tx represents an action of procedure X in a deriva-
tion and is encoded as (a,cp ...cpg), where cp; ...cpx are contextual predicates
such that e¢p; € CPx and cp;(b) = true, for 1 < i < k, and where b is the context in
which action a occurred for procedure X. For example, Figure 9 shows the encod-
ing of a partial derivation in which the BUILD procedure predicts Join VP. While
any context b € B is, in practice, encoded as a sequence of contextual predicates,
the encoding is just an implementation choice; the mathematics of the maximum
entropy framework do not rely upon any one particular encoding of the space of
possible contexts B. The training events Tx for a procedure X € { TAG, CHUNK,
BUILD, CHECK } are used for feature selection and parameter estimation, described
below.

8.2.4. Feature Selection Feature selection refers to the process of choosing a
useful subset of features Sy from the set of all possible features Px for use in the
maximum entropy model corresponding to procedure X. If CPx are all the con-
textual predicates used to encode the training events 7x, and .Ax are the possible



Table 3. Contextual Information Used by Probability Models (*
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= all possible less specific contexts

are used, | = if a less specific context includes a word, it must include the head word of the current
tree, i.e., the Oth tree.)

Procedure Templates Description Templates Used
TAG See Ratnaparkhi (1996)
CHUNK chunkandpostag(n)* The word, POS tag, and chunkandpostag(0),
chunk tag of nth leaf. Chunk chunkandpostag(—1),
tag omitted if n > 0. chunkandpostag(—2)
chunkandpostag(1),
chunkandpostag(2)
chunkandpostag(m,n)*  chunkandpostag(m) &  chunkandpostag(—1,0),
chunkandpostag(n) chunkandpostag(0, 1)
default Returns true for any context.
BUILD cons(n) The head word, con- cons(0), cons(—1), cons(—2),
stituent (or POS) label, cons(1), cons(2)
and start/join annotation
of the nth tree. Start/join
annotation omitted if n > 0.
cons(m,n)* cons(m) & cons(n) cons(—1,0), cons(0,1)
cons(m,n,p)T cons(m), cons(n), & cons(p).  cons(0,—1,—2), cons(0,1,2),
cons(—1,0,1)
punctuation The constituent we could join  bracketsmatch, iscomma, end-
(1) contains a “[” and the cur-  ofsentence
rent tree is a “]”; (2) contains
a “,” and the current tree is a
“"; (3) spans the entire sen-
tence and current tree is “.”
default Returns true for any context.
CHECK checkcons(n)* The head word, constituent checkcons(last),
(or POS) label of the nth  checkcons(begin)

tree, and the label of pro-
posed constituent. begin and
last are first and last child
(resp.) of proposed con-
stituent.

checkcons(m,n)*

checkcons(m) & checkcons(n)

checkcons(z,last)
begin <1 < last

production

Constituent label of parent
(X), and constituent or POS
labels of children (X; ... X5)

of proposed constituent

production=X — X;...X,

surround(n)*

POS tag and word of the nth
leaf to the left of the con-
stituent, if n < 0, or to the
right of the constituent, if
n>0

surround(1), surround(2),
surround(—1), surround(—2)

default

Returns true for any context.
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Start S Start VP Join VP IN NP
| | | | o~
NP VBD NP with DT NN
| | = |
PRP saw DT NN the telescope
| | |
I the man

The above action (Join VP) is encoded as follows (a vertical bar | separates informa-
tion from the same subtree, while a comma , separates information from different
subtrees. A tilde ~ denotes a constituent label, as opposed to a part-of-speech tag.):

Action = JoinVP

Contextual Predicates =

DEFAULT

cons (0)="NP |man

cons (0*)="NP

cons(-1)=StartVP|VBD|saw

cons(-1*)=StartVP|VBD

cons(-2)=StartS|“NP|I

cons (-2*)=StartS| NP

cons(1)=IN|with

cons(1*)=IN

cons(2)="NP|telescope

cons (2*)="NP

cons(—1*,0%)=StartVP|VBD, “NP
cons(-1,0%)=StartVP|VBD|saw, "NP
cons(—1*,0)=StartVP|VBD, "NP|man
cons(-1,0)=StartVP|VBD|saw, "NP|man

cons (0*,1%)="NP,IN

cons(0,1%)="NP|man,IN

cons(0*,1)="NP,IN|with

cons(0,1)="NP|man, IN|with

cons (0%, 1%,2%)="NP,IN, NP
cons(0,1%,2*)="NP|man,IN, “NP
cons(0,1,2*)="NP|man,IN|with, "NP
cons(0,1*,2)="NP|man, IN, “NP|telescope
cons(0,1,2)="NP|man,IN|with, "NP|telescope
cons(—1*,0%,1*)=StartVP|VBD, "NP,IN
cons(-1%*,0,1*)=StartVP|VBD, "NP|man, IN
cons(-1,0,1*)=StartVP|VBD|saw, "NP |man, IN
cons(-1*,0,1)=StartVP|VBD, "NP|man,IN|with
cons(-1,0,1)=StartVP|VBD|saw, "NP|man,IN|with
cons(—2*,-1%,0%)=StartS| “NP,StartVP|VBD, "NP
cons(—2*,-1%,0)=StartS| “NP,StartVP|VBD, "NP|man
cons(-2,-1*,0)=StartS| NP|I,StartVP|VBD, "NP|man
cons(-2*,-1,0)=StartS| NP,StartVP|VBD|saw, "NP |man
cons(-2,-1,0)=StartS|"NP|I,StartVP|VBD|saw, "NP|man

Figure 9. Encoding a derivation with contextual predicates
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actions for procedure X, the set of possible features Px for use in X’s model are:

1 if ep(b) = true && a = o
Px = {flf(ab) = { 0 othegvs?ise
where ¢cp € CPx and o’ € Ax}

Thus any contextual predicate cp that occurs with any action a’ can potentially be
a feature. However, many of these features occur infrequently, and are therefore
not reliable sources of evidence since their behavior in the training events may not
represent their behavior in unseen data. For example, it is unlikely that all of the
contextual predicates in Table 9 would form reliable features.

We use a very simple feature selection strategy: assume that any feature that
occurs less than 5 times is noisy and discard it. Feature selection with a count
cutoff does not yield a minimal feature set; many of the selected features will be
redundant. However, in practice, it yields a feature set that is mostly noise-free
with almost no computational expense. Therefore, the selected features for use in
procedure X'’s model are

1 if ep(b) = true && a =a’

0 otherwise

sx = {flf(an) = {

where cp € CPx and o’ € Ax, Z f(a,b) > 5}
(a,b)eTx

In this approach, the burden of deciding the contribution of each selected feature
towards modeling the data falls to the parameter estimation algorithm.

3.2.5. Parameter Estimation Each training set Tx is used to estimate the pa-
rameters of a corresponding probability model px of the form (2), where X € {
TAG, CHUNK, BUILD, CHECK }. Each feature f; corresponds to a parameter o;,
which can be viewed as a “weight” that reflects the importance or usefulness of the
feature.

The parameters {1 ...} of each model are found automatically with the Gen-
eralized Iterative Scaling algorithm (Darroch and Ratcliff, 1972), which is summa-
rized below:

1. Add a “correction” feature fr41 to the model, defined as

k

fk+1(a1b) =C- Efj(a‘!b)

7j=1
where C is some constant > 1 such that for any (a, b) pair:

k+1

ij(a’b) =C
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2. Estimate the parameters using the following iterative algorithm:

RS
(n+1)
o
7 7 By fj

=1
o Esfi qx

c

where

Eymfi = Y 8(0)p™(alb)fi(a,b)
(a,?)

!
1 (7)\£5(a,b)
- o ila,

The algorithm guarantees that the likelihood of the training set is non-decreasing,
ie., L(p"*') > L(p™), and that the sequence {p"|n = 1,2,...} will eventually
converge to p*, the maximum likelihood estimate for models of form (2).

In practice, the parameter updates can be stopped after some fixed number of
iterations (e.g., 100) or when L(p"*!) — L(p™) < T where T is some small heuris-
tically set threshold. The GIS algorithm is applied separately to the training sets
Tx to create the models px, where X € { TAG, CHUNK, BUILD, CHECK }.

p™)(alb)

3.2.6. Scoring Parse Trees We then use the models pTaq, PcHUNK, PBUILD,
and pcurck to define a function score, which the search procedure uses to rank
derivations of incomplete and complete parse trees. For notational convenience,
define ¢ as follows

prac(alb) if a is an action from TAG

pcuunk (a|b) if a is an action from CHUNK
g(alb) = e .

pauiLp(ald) if a is an action from BUILD

peuick (a|b) if a is an action from CHECK

Let deriv(T) = {a1, ..., an} be the derivation of a parse T', where T' is not necessar-
ily complete, and where each a; is an action of some tree-building procedure. By
design, the tree-building procedures guarantee that {ai,...,a,} is the only deriva-
tion for the parse T'. Then the score of T' is merely the product of the conditional
probabilities of the individual actions in its derivation:

score(T) = H q(ailb;)

a;€deriv(T)

where b; is the context in which a; was decided.

3.3. Search

The search heuristic attempts to find the best parse T*, defined as:

T* = argmax score(T)
T etrees(S)
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advance: dx @ —di...dn /* Applies relevant tree building
procedure to d and returns list of new
derivations whose action probabilities
pass the threshold @ */

insert: dx h — void /* inserts d in heap h */

extract: h—d /* removes and returns derivation in A
with highest score */

completed: d — {true,false} /* returns true if and only if d is a
complete derivation */

M =20

K =20

@ =.95

C = <empty heap> /* Heap of completed parses */

hg =<input sentence> /* h; contains derivations of length ¢ */

while ( |C|< M )
if ( Vi, h; is empty )
then break
t =max{: | h; is non-empty}
sz = min(K, |h;|)
for =1 to sz
dy...d, = advance( extract(hy)), @ )
for ¢g=1 to p
if (completed(d,))
then insert(d,, C)
else insert(dy, hiy1)

Figure 10. Top K BFS Search Heuristic

where trees(S) are all the complete parses for an input sentence S.

The heuristic employs a breadth-first search (BFS) which does not explore the
entire frontier, but rather, explores only at most the top K scoring incomplete
parses in the frontier, and terminates when it has found M complete parses, or
when all the hypotheses have been exhausted. Furthermore, if {a; ...a,} are the
possible actions for a given procedure on a derivation with context b, and they are
sorted in decreasing order according to g(a;|b), we only consider exploring those
actions {aj ...a,, } that hold most of the probability mass, where m is defined as
follows:

m= mn?xz q(a;]b) < @
=1

and where @) is a threshold less than 1. The search also uses a tag dictionary, de-
scribed in Ratnaparkhi (1996), that is constructed from training data and reduces
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Figure 11. Observed running time of top K BFS on Section 23 of Penn Treebank WSJ, using one
167Mhz UltraSPARC processor and 256 MB RAM of a Sun Ultra Enterprise 4000.

the number of actions explored by the tagging model. Thus there are three param-
eters for the search heuristic, namely K,M, and @ and all experiments reported in
this paper use K = 20, M = 20, and Q = .95'. Figure 10 describes the top K BFS
and the semantics of the supporting functions.

It should be emphasized that if K > 1, the parser does not commit to a single POS
or chunk assignment for the input sentence before building constituent structure.
All three of the passes described in section 3.1 are integrated in the search, i.e.,
when parsing a test sentence, the input to the second pass consists of K of the
top scoring distinct POS tag assignments for the input sentence. Likewise, the
input to the third pass consists of K of the top scoring distinct chunk and POS tag
assignments for the input sentence.

The top K BFS described above exploits the observed property that the indi-
vidual steps of correct derivations tend to have high probabilities, and thus avoids
searching a large fraction of the search space. Since, in practice, it only does a
constant amount of work to advance each step in a derivation, and since derivation
lengths are roughly proportional to the sentence length, we would expect it to run
in linear observed time with respect to sentence length. Figure 11 confirms our
assumptions about the linear observed running time.
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Table 4. Sizes of Training Events, Actions, and Features

Procedure Number of Training Events Number of Actions Number of Features

TAG 935655 43 119910
CHUNK 935655 41 230473
CHECK 1097584 2 182474
BUILD 1097584 52 532814

4. Experiments

Experiments were conducted on a treebank that is widely used in the statistical
natural language processing community, namely, the Wall St. Journal treebank
(release 2) from the University of Pennsylvania (Marcus et al., 1994). The maximum
entropy parser was trained on sections 2 through 21 (roughly 40000 sentences) of the
Wall St. Journal corpus, and tested on section 23 (2416 sentences) for comparison
with other work. Table 4 describes the number of training events extracted from
the Wall St. Journal corpus, the number of actions in the resulting probability
models, and the number of selected features in the resulting probability models.
It took roughly 30 hours to train all the probability models, using one 167 Mhz Sun
UltraSPARC processor and 1 Gb of disk space. Only the words, part-of-speech tags,
constituent labels, and constituent boundaries of the Penn treebank were used for
training and testing. The other annotation, such as the function tags that indiciate
semantic properties of constituents, and the null elements that indicate traces and
coreference, were removed for both training and testing. Previous literature on
statistical parsing has used the following measures, based on those proposed in
Black et al. (1991), for comparing a proposed parse P with the corresponding
correct treebank parse T

# correct constituents in P

Recall =

4t constituents in T'
# correct constituents in P

Precision = - -
# constituents in P

A constituent in P is “correct” if there exists a constituent in T' of the same label
that spans the same words.? Table 5 shows results using these measures, as well as
results using the slightly more forgiving measures used in Magerman (1995). Table 5
shows that the maximum entropy parser compares favorably to other state-of-the-
art systems (Magerman, 1995; Collins, 1996; Goodman, 1997; Charniak, 1997;
Collins, 1997) and shows that only the results of Collins (1997) are better in both
precision and recall. The parser of Hermjakob and Mooney (1997) also performs
well (90% labelled precision and recall) on the Wall St. Journal domain, but uses
a test set comprised of sentences with only frequent words and recovers a different
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Table 5. Results on 2416 sentences of
section 23 (0 to 100 words in length) of
the WSJ Treebank. Evaluations marked
with © ignore quotation marks. Evaluations
marked with * collapse the distinction be-
tween the constituent labels ADVP and PRT,
and ignore all punctuation.

Parser Precision  Recall
Maximum Entropy® 86.8% 85.6%
Maximum Entropy* 87.5% 86.3%
(Magerman, 1995)* 84.3% 84.0%

(Collins, 1996)* 85.7% 85.3%
(Goodman, 1997)* 84.8% 85.3%
(Charniak, 1997)* 86.7% 86.6%

(Collins, 1997)* 88.1% 87.5%

Table 6. Speed and accuracy on 5% random sam-
ple of test set, as a function of search parameters

K and M

K,M Seconds/Sentence Precision Recall

20 2.07 87.9 87.1
15 1.58 87.7 86.9
10 1.07 87.7 86.9
7 0.76 87.4 86.6
5 0.56 87.3 86.8
3 0.35 86.1 86.1
1 0.14 82.4 83.4

form of annotation, and is therefore not comparable to the parsers in Table 5.
Figure 12 shows the effects of training data size versus performance, and Table 6
shows the effect of varying the search parameters K and M on the parser’s speed
and accuracy. Parsing accuracy degrades as K and M are reduced, but even with
K =1and M =1, accuracy is over 82% precision and recall.



21

90

86 -

% Accuracyg4

82
80 ~ Precision <— -
' Recall -+ -
78 R + ]
| | | |
0 20 40 60 80 100

% Sample of Original Training Set

Figure 12. Performance on section 23 as a function of training data size. The X axis represents
random samples of different sizes from sections 2 through 21 of the Wall St. Journal corpus.

4.1. Portability

Portability across domains is an important concern, since corpus-based methods
will suffer in accuracy if they are tested in a domain that is unrelated to the one
in which they are trained (e.g., see Sekine (1997)). Since treebank construction
is a time-consuming and expensive process, it is unlikely (in the near future) that
treebanks will exist for every domain that we could conceivably want to parse. It
then becomes important to quantify the potential loss in accuracy when training
on a treebanked domain, like the Wall St. Journal, and testing on a new domain.
The experiments in this section address the following two practical questions :

e How much accuracy is lost when the parser is trained on the Wall St. Journal
domain, and tested on another domain (compared to when the parser is trained
and tested on the Wall St. Journal) ?

e How much does a small amount of additional training material (2000 sentences)
on a new domain help the parser’s accuracy on the new domain ?

The new domains, namely “Magazine & Journal Articles”, “General Fiction”, and
“Adventure Fiction”, are from the Brown corpus (Francis and Kucera, 1982), a
collection of English text from Brown University that represents a wide variety of
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Table 7. Description of training and test sets

Name Description Category
WSJ.train  Sections 2 through 21 of the WSJ corpus Financial News
G.train First 2000 sentences of section G in Brown corpus Magazine Articles
G.test Remaining 1209 sentences of section G in Brown corpus Magazine Articles
K.train First 2000 sentences of section K in Brown corpus General Fiction
K.test Remaining 2006 sentences of section K in Brown corpus  General Fiction
N.train First 2000 sentences of section N in Brown corpus Adventure Fiction
N.test Remaining 2121 sentences of section N in Brown corpus = Adventure Fiction

Table 8. Portability Experiments on the Brown corpus. See Table 7 for the training and test sets.

Strategy #  Description Test Corpus Accuracy (Precision/Recall) Avg. Accuracy
G K N (Precision/Recall)
Strategy 1 Train on 80.2%/79.5% 79.1%/78.8% 80.6%/79.9% 80.0%/79.4%
WSJ.train,
test on
X.test
Strategy 2 Train on 81.0%/80.5% 80.9%/80.3% 82.0%/81.0% 81.3%/80.6%
WSJ.train
+ X.train,
test on
X.test
Strategy 3 Train on 78.2%/76.3% 77.7%/76.7% 78.7%/77.6% 78.2%/76.9%
X.train,
test on
X.test

different domains. These domains have been annotated in a convention similar to
the text of the Wall St. Journal treebank, as part of the Penn treebank project.

Table 8 describes the results of several different training schemes, and Table 7
describes the training and test corpora. The feature sets of the parser were not
changed in any way when training from the Brown corpus domains. According to
Table 8, the training schemes for parsing a new domain D, ranked in order from
best to worst, are:

1. Strategy 2: Train on a mixture of a lot of Wall St. Journal (WSJ) and a little
of D

2. Strategy 1: Train on a lot of WSJ
3. Strategy 3: Train on a little of D

All experiments on a particular new domain (G, K, and N) are controlled to use
the same test set, and the additional training sets G.train, K.train, and N.train all
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consist of 2000 sentences from their respective domain. Compared to the accuracy
achieved when training and testing on the Wall St. Journal (86.8% precision/85.6%
recall as shown in Table 5), we conclude that:

e on average, we lose 6.8% precision and 6.2% recall when training on the Wall
St. Journal and testing on the Brown corpus (strategy 1),

e on average, we lose 5.5 % precision and 5% recall when training on the Wall St.
Journal and the domain of interest, and testing on that same domain (strategy

2).

The discussion thus far has omitted one other possibility, namely, that the lower
Brown corpus performance in strategies 1 and 2 is due to some inherent difficulty
in parsing the Brown corpus text, and not to the mismatch in training and test
data. A quick glance at Figure 12 and Table 8 dispels this possibility, since training
on roughly 2000 sentences of the Wall St. Journal yields 79% precision and 78%
recall, which is only slightly higher (1%) than the results on the Brown corpus under
identical circumstances (strategy 3), roughly 78% precision 77% recall. It follows
that the Brown corpus is only slightly more difficult to parse than the Wall St.
Journal corpus, and that the training domain/test domain mismatch must account
for most of the accuracy loss when using strategies 1 and 2.

4.2. Reranking the Top N

It 1s often advantageous to produce the top N parses instead of just the top 1,
since additional information can be used in a secondary model that re-orders the
top N and hopefully improves the quality of the top ranked parse. Suppose there
exists a perfect reranking scheme that, for each sentence, magically picks the best
parse from the top N parses produced by the maximum entropy parser, where
the best parse has the highest average precision and recall when compared to the
treebank parse. The performance of this perfect scheme is then an upper bound on
the performance of an actual reranking scheme that might be used to reorder the
top N parses. Figure 13 shows that the perfect scheme would achieve roughly 93%
precision and recall, which is a dramatic increase over the top 1 accuracy of 87%
precision and 86% recall. Figure 14 shows that the “Exact Match”, which counts
the percentage of times the proposed parse P is identical (excluding POS tags) to
the treebank parse T, rises substantially to about 53% from 30% when the perfect
scheme is applied. It is not surprising that the accuracy improves by looking at the
top N parses, but it is suprising—given the thousands of partial derivations that
are explored and discarded—that the accuracy improves drastically by looking at
only the top 20 completed parses. For this reason, research into reranking schemes
appears to be a promising and practical step towards the goal of improving parsing
accuracy.
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Figure 18. Precision & recall of a “perfect” reranking scheme for the top N parses of section 23
of the WSJ Treebank, as a function of N. Evaluation ignores quotation marks.

5. Comparison With Previous Work

When compared to other parsers, the accuracy of the maximum entropy parser
1s state-of-the-art. It performs slightly better than or equal to most of the other
systems compared in Table 5, and performs only slightly worse than Collins (1997).
However, the differences in accuracy are fairly small, and it is unclear if the dif-
ferences will matter to the performance of applications that require parsed input.
The main advantage of the maximum entropy parser is not its accuracy, but that
1t achieves the accuracy using only simple facts about data that have been derived
from linguistically obvious intuitions about parsing. As a result, the evidence it
needs can be specified concisely, and the method can be re-used from other tasks,
resulting in a minimum amount of effort on the part of the experimenter.

Furthermore, the maximum entropy parser combines some of the best aspects of
other work. For example, the parsers of Black et al. (1993), Jelinek et al. (1994),
Magerman (1995) use a general learning technique—decision trees—to learn parsing
actions, and need to represent words as bitstrings derived from a statistical word
clustering technique. The maximum entropy parser also uses a general learning
technique, but uses natural linguistic representations of words and constituents,
and therefore does not require a (typically expensive) word clustering procedure.
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Figure 14. Exact match of a “perfect” reranking scheme for the top N parses of section 23 of the
WSJ Treebank, as a function of N. Evaluation ignores quotation marks.

Other parsers, like those of Collins (1996), Goodman (1997), Charniak (1997),
Collins (1997) use natural linguistic representations of words and constituents, but
do not use general machine learning techniques. Instead, they use custom-built
statistical models that combine evidence in clever ways to achieve high parsing ac-
curacies. While it is always possible to tune such methods to maximize accuracy,
the methods are specific to the parsing problem and require non-trivial research
effort to develop. In contrast, the maximum entropy parser uses an existing mod-
eling framework that is essentially independent of the parsing task, and saves the
experimenter from designing a new, parsing-specific statistical model.

In general, more supervision typically leads to higher accuracy. For example,
Collins (1997) uses the semantic tags in the Penn treebank while the other, slightly
less accurate parsers in Table 5 discard this information. Also, Hermjakob and
Mooney (1997) uses a hand-constructed knowledge base and subcategorization table
and report 90% labelled precision and recall, using a different test set and evaluation
method. The additional information used in these approaches, as well as the word
clusters used in Magerman (1995), could in theory be implemented as features in
the maximum entropy parser. Further research is needed to see if such additions
to the parser’s representation will improve the parser’s accuracy.
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The portability of all the parsers discussed here is limited by the availability of
treebanks. Currently, few treebanks exist, and constructing a new treebank requires
a tremendous amount of effort. It is likely that all current corpus-based parsers will
parse text less accurately if the domain of the text is not similar to the domain of
the treebank that was used to train the parser.

6. Conclusion

The maximum entropy parser achieves state-of-the-art parsing accuracy, and min-
imizes the human effort necessary for its construction through its use of both a
general learning technique, and a simple representation derived from a few intu-
itions about parsing. Those results which exceed those of the parser presented here
require much more human effort in the form of additional resources or annotation.
In practice, it parses a test sentence in linear time with respect to the sentence
length. It can be trained from other domains without modification to the learn-
ing technique or the representation. Lastly, this paper clearly demonstrates that
schemes for reranking the top 20 parses deserve research effort since they could
yield vastly better accuracy results.

The high accuracy of the maximum entropy parser also has interesting impli-
cations for future applications of general machine learning techniques to parsing.
It shows that the procedures and actions with which a parser builds trees can be
designed independently of the learning technique, and that the learning technique
can utilize the exactly same sorts of information, e.g., words, tags, and constituent
labels, that might normally be used in a more traditional, non-statistical natural
language parser. This implies that it is feasible to use maximum entropy mod-
els and other general learning techniques to drive the actions of other kinds of
parsers trained from more linguistically sophisticated treebanks. Perhaps a better
combination of learning technique, parser, and treebank will exceed the current
state-of-the-art parsing accuracies.
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Notes

1. The parameters K,M, and @) were optimized for speed and accuracy on a “development set”
which is separate from the training and test sets.

2. The precision and recall measures do not count part-of-speech tags as constituents.
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