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Abstract This paper describes the application of Dis-
tributional Clustering [20] to document classification.
This approach clusters words into groups based on the
distribution of class labels associated with each word.
Thus, unlike some other unsupervised dimensionality-
reduction techniques, such as Latent Semantic Indexing,
we are able to compress the feature space much more
aggressively, while still maintaining high document clas-
sification accuracy.

Experimental results obtained on three real-world
data sets show that we can reduce the feature dimen-
sionality by three orders of magnitude and lose only 2%
accuracy—significantly better than Latent Semantic In-
dexing [6], class-based clustering [1], feature selection by
mutual information [23], or Markov-blanket-based fea-
ture selection [13]. We also show that less aggressive
clustering sometimes results in improved classification
accuracy over classification without clustering.

1 Introduction

The popularity of the Internet has caused an exponential
increase in the amount of on-line text and in the number
of people who create and use this text. As the amount
of documents and number of users rise, automatic doc-
ument categorization becomes an increasingly important
tool for helping people organize this vast amount of data.
Statistical document classification algorithms have been
applied to categorizing newsfeeds [10], classifying Web
pages [4], sorting electronic mail [17] and learning the
interests of users [14].

In this paper we cluster words into groups specifically
for the benefit of document classification. While much
study has been devoted to word clustering for language
modeling and word co-occurrence [1, 20], little work has
been done on word clustering for document classifica-
tion. The underlying clustering method we apply is Dis-
tributional Clustering [20]—an information-theoretic ap-
proach that has shown good performance in language
modeling.

Word clustering methods create new, reduced-size
event spaces by joining similar words into groups. Dis-
tributional Clustering does so by joining words that in-
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duce similar probability distributions among the target
features that co-occur with the words in question. The
reasoning can be understood intuitively as follows. If two
different words “vote” similarly among the possible an-
swers in the task at hand, then joining those two words,
(and causing each of them to vote according to the aver-
age of their individual votes), will not hurt performance.
In fact, performance may be increased by clustering when
training data is sparse, because averaging statistics for
similar words can result in more robust estimates. Sim-
ilarity between distributions is measured by a variant of
Kullback-Leibler divergence.

In document classification, the target concept is the
class label. Thus, in this paper, we measure word similar-
ity by the distributions of class labels associated with the
words in question. For example, consider classifying doc-
uments about sports into categories by individual sport
(e.g. baseball, hockey, tennis). In the training data, the
words puck and goalie may occur only in the in the hockey
class. Thus, for the purposes of this classification task,
there is no need to distinguish between them. All words
that are strongly indicative of the hockey class will be
clustered together. Furthermore, Distributional Cluster-
ing will sensibly cluster words that are indicative of more
than one class. The word team may occur with equal
frequency in classes baseball and hockey; the word team-
mates may also occur equally in just those two classes.
These words could be merged. The following section gives
a more detailed example of this idea.

1.1 Benefits of Word Clustering

There are three key benefits of using word clustering: (1)
useful semantic word clusterings, (2) higher classification
accuracy and (3) smaller classification models. The sec-
ond two reasons are shared with feature selection, and
thus feature clustering can be seen as a complement or al-
ternative to feature selection. Feature clustering is better
at reducing the number of redundant features, whereas
feature selection is better at removing detrimental, noisy
features.

Word clustering can provide useful semantically-related
groups of words—in effect, an automatically generated
thesaurus. An interesting aspect of the semantic groups
produced by our algorithm is that they depend on the
class labels assigned to the documents. This reflects the
fact that some words that are synonyms in one context
are not in another. The clusters are based on a super-
vised machine learning paradigm, and are task-focussed.
The usefulness of an automatically-generated thesaurus
is difficult to evaluate, however, and is not the subject of
this paper.

Second, word clustering can result in higher classifi-



cation accuracy, as described above. This will be further
discussed in later sections.

Third, the size of the classification model can be
greatly reduced because separate sets of parameters for
many words are replaced with a single set of parame-
ters for a word cluster. Our results include successful
size reductions by several orders of magnitude, from, for
example, 50,000 to 50.

We argue that successful use of small-footprint text
classification models becomes increasingly important with
the wide-spread and popular use of text classification.
For example, large population, high-volume routing tasks,
as required by companies such as WiseWire [21], can in-
volve text categorization with hundreds of thousands of
class labels on a stream of documents arriving a rate of
hundreds per second—the use of word clustering can
avoid the need for machines with many gigabytes of
memory. At the other end of the scale, consider hand-
held computers that automatically organize their data
by text classification—word clustering can allow clas-
sification models to fit in these restricted-memory ma-
chines. As text classification spreads beyond servers and
research machines, and onto home computers, secretaries
machines and network computers, reducing the number
of features for which statistics must be maintained be-
comes more important.

Furthermore, we maintain that the dramatically-reduced

dimensionality allows the use of more complex algorithms
that would not have been feasible with the 50,000 original
dimensions.

1.2 Contributions

This paper introduces the application of Distributional
Clustering to document classification with a naive Bayes
classifier. We derive naive Bayes, explain its assump-
tions, and discuss its close ties to cross-entropy. We
describe Distributional Clustering and show how Distri-
butional Clustering clusters features so as to minimize
errors in cross entropy.

We present experimental results on three real-world
text corpora, including newswire stories, UseNet articles
and Web pages. Results show that Distributional Clus-
tering can reduce the feature dimensionality by three or-
ders of magnitude, and lose only 2% accuracy. This per-
formance is significantly better than class-based clus-
tering using mutual information [1], clustering by Latent
Semantic Indexing [6], feature selection by information
gain [23] and feature selection by Markov-blanket [13].
On one of the data sets we show that clustering increases
classification accuracy. We hypothesize why this did not
happen in more cases, and discuss possible future im-
provements.

2 Clustering Words by Class Distributions

This section introduces our probabilistic framework, de-
rives the naive Bayes classifier and explains Distribu-
tional Clustering.

Like previous work in Distributional Clustering [20]
we use a form of “Kullback-Leibler divergence to the
mean.” Unlike their work, we use a weighted average
instead of a simple average, we use hard clustering in-
stead of soft, and we use a greedy agglomerative method
instead of a divisive entropy-based method.

2.1 Probabilistic Framework and Naive Bayes

We approach text classification in a Bayesian learning
framework. We assume that the text data was generated
by a parametric model, and use training data to calculate
Bayes optimal estimates of the model parameters. Then,
equipped with these estimates, we classify new test doc-
uments by using Bayes rule to turn the generative model
around and calculate the probability that a class would
have generated the test document in question. Classifica-
tion then becomes a simple matter of selecting the most
probable class.

The training data consists of a set documents, D =
{di1,ds, ...,d,}, where each document is labeled with a
class from a set of classes C = {c1,c2,...,cm }.

We assume that the data is generated by a mixture
model, (parameterized by 6), with a one-to-one cor-
respondence between mixture model components and
classes. Thus, the data generation procedure for a doc-
ument, d;, can be understood as (1) selecting a class
according to the class priors, P(c;|6), then (2) having
the corresponding mixture generate a document accord-
ing to its own parameters, with distribution P(d;|c;;0).
The probability of generating document d; independent
of its class is thus a sum of total probability over all
mixture components:
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P(dil6) = > P(c;[6)P(dsle;; 6) (1)

Now we expand our notion of how a document is gen-
erated by an individual mixture component. In this pa-
per we approach document generation as language mod-
eling. Thus, unlike some notions of naive Bayes in which
documents are ‘events’ and the words in the document
are ‘attributes’ of that event (a multi-variate Bernoulli
model), we instead consider words to be ‘events’ (a multi-
nomial model) [19]. Multinomial naive Bayes has been
shown to out-perform the multi-variate Bernoulli on
many real-world corpora [19]. We say a document is
comprised of an ordered sequence of word events, and
write d;r for the word in position k& of document d;.
Given this, we can expand the expression for the prob-
ability of a document given class ¢;, P(di|c;;6), saying
that the probability of the sequence is equal the product
of the probabilities of the events in the sequence, also
remembering that each event may depend on the events
that preceded it:

|d;]

P(dile;; 6) = P(|dil) | [ P(dikles; 05 dia < k), (2)
k=1

where we assume that document length, |d;|, is dis-
tributed independently of class.

Next we make the naive Bayes assumption: we as-
sume that the probability of each word event in a docu-
ment is independent of the word’s context, and further-
more, independent of its position in the document. Note
that this is the same as saying we use a uni-gram language
model. Each word event is drawn from a multinomial
distribution over the set of all words in the vocabulary,
V. We write w; for the t-th word in V| and given that
dir = w, we can express the naive Bayes assumption by
writing

P(diklcj; 05 diq, g < k) = P(wilc;; 0). 3)



Given the assumption about one-to-one correspon-
dence between mixture model components and classes,
and the naive Bayes assumption, the mixture model is
composed of disjoint sets of parameters for each class
¢j, and the parameter set for each class is composed of
probabilities for each word, 6.,|; = P(wt|c;;0). The
only other parameters in the model are the class prior
probabilities, written 6., = P(c;|6).

We can now calculate estimates of 8, (written ), of
these parameters from the training data. The 9wt|cj es-
timates consist of straightforward counting of events,
supplemented by ‘smoothing’ with a Laplacean prior
that primes each estimate with a count of one. Define
N(w¢, d;) to be the count of the number of times word
w; occurs in document d;, and define P(c¢;|d;) = {0, 1}
as given by the document’s class label, then the estimate
of the probability of word w; in class ¢; is

s _ 1+YPN
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The class prior parameters, 6.;, are estimated by
maximume-likelihood estimate—the fraction of documents
in each class in the corpus:

A 12l cjld;
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Given estimates of these parameters calculated from
the training documents, classification can be performed
on test documents by calculating the probability of each
class given the evidence of the test document, and select-
ing the class with the highest probability. We formulate
this by first applying Bayes rule, and then substituting
for P(di|c;;6) and P(d;|0) using equations 1, 2 and 3.

di)P(cj|d;)
(wa, di)P(cj|di)
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Both the mixture model and word independence as-
sumptions are violated in practice with real-world data;
however, there is empirical evidence that naive Bayes of-
ten performs well in spite of these violations [16, 23, 10,
4]. Friedman and Domingos and Pazzani discuss why
the violation of the word independence assumption some-
times does little damage to classification accuracy [9, 7.

2.2 Measuring Word Similarity for Distribu-
tional Clustering

Now we address the question of how to cluster words in
the context of our generative model and naive Bayes.

Word clustering algorithms define a similarity mea-
sure between words, and collapse similar word into single
events that no longer distinguish among their constituent
words. Typically, the parameters of the cluster become
the weighted average of the parameters of its constituent
words.

Consider, for example, the random variable over classes,

C, and its distribution given a particular word, w;. We
write this distribution P(C|w;). When words w; and
ws are clustered together, the new distribution is the
weighted average of the individual distributions
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Figure 1: In the 20 Newsgroups data set, class probabil-
ity distributions for words tire and steering and for their
combination

P(w¢)
P(wt) + P(ws)
P(ws)
P(w) + P(ws)

P(Clwe V ws) = P(Clwe)

P(Clws) (7)

Distributional Clustering differs from some other ma-
chine learning approaches to similarity metrics (e.g. k-
nearest neighbor [2]) in that it measures similarity based
on the target variable that it is trying to estimate for
the task at hand, not the other “input” attributes. More
specifically, it examines the the probability distribution
over the target variable induced by the different events to
be clustered, and measures similarity between the events
as similarity between the induced target variable distri-
butions.

In the context of document classification, the target
variable for the task at hand is the class label. Dis-
tributional clustering thus measures the similarity be-
tween two words w; and ws as the similarity between
the class variable distributions they induce: P(C|w;) and
P(C|ws).

An example of these class distributions in data from
the 20 Newsgroups corpus is shown in figure 1. Consider
the line for the word tire. The horizontal axis has ticks
for the (order-irrelevant) list of class labels. The verti-
cal axis indicates the probability of each class given the
word tire, and the shape of the line shows the proba-
bility distribution over classes given tire, P(C|tire). The
graph indicates that the word occurs mostly in classes 8
(rec.autos) and 9 (rec.motorcycles), and only mildly in
other classes.

Remembering the classification task, the graph can
also be interpreted as a picture of how much the word
tire “votes” for each of the classes whenever it occurs in
a test document. The line thus shows the essence of how
tire contributes to the classification algorithm.

In the same figure, notice the line for the word steer-
ing. The shape of its distribution is quite similar to that
of tire. The third line, labeled Cluster 1204, shows the
class distribution from a cluster containing both words,
and since the words have similar distributions, the dis-
tribution of the cluster is similar to each. Thus, if the
word tire voted according to the distribution of Cluster
1204 instead of according to the tire class distribution, it
would not be voting much differently, and the final clas-
sification scores would not be very far off. (Table 1 shows



Cluster 1204

Cluster 1287

Cluster 1473

(Motorcycle and (Motorcycle) (Baseball and
Automobile) Hockey)
honda bike season

rear biker players
wheel yamaha scored
steering harley rookie

tire riders philly
suspension bikers roster
throttle harleys announcers
mechanic countersteering coaches
rust wheelie leagues

Table 1: Lists of highest probability words from three
clusters (out of 1200) created by Distributional Cluster-
ing on the 20 Newsgroups dataset.

other words that also fall in cluster 1204, and two other
clusters.)

This example expresses the core intuition behind Dis-
tributional Clustering for document classification: the
class distributions, P(C|w), express how individual words
contribute to classification, and we cluster words so as to
preserve the shape of these distributions.

Now we turn to the question of how exactly to mea-
sure the difference between two probability distributions.
Kullback-Leibler divergence is an information-theoretic
measure that does just this.

The KL divergence between the class distributions in-
duced by w; and w; is written D(P(C|w:)||P(C|ws)), and
is defined

cl
ZP ¢jwr) log ( E(C:jllzjt;) ®)

In the context of information theory, KL divergence
can be intuitively understood as a measure of inefficiency
that occurs when messages are sent according to one dis-
tribution, (P(Clw:)), but encoded with a code that is
optimal for a different distribution, (P(C|ws)).

KL divergence has some odd properties. It is not
symmetric, and it is infinite when an event with non-zero
probability in the first distribution has zero probability
in the second distribution.

Thus, in Distributional Clustering we use a related
measure that does not have these problems. It is the
average of the KL divergence of each distribution to their
mean distribution, called “KL divergence to the mean.”
Unlike earlier work [20] we use a weighted average instead
of a simple average.

P(wt) - D(P(Clwe)||P(Clw: V ws))
+ P(ws) - D(P(Clws)|[P(Clw; V ws)) (9)

This metric can be understood as the expected amount
of inefficiency incurred if, instead of compressing two dis-
tributions optimally with their own code, we use the code
that would be optimal for their mean. This explanation
makes it clear why this metric is such a good fit for a
clustering distance metric. It describes perfectly the ef-
fect of clustering—events that formerly generated their
own individual statistics, now, once clustered, generate
combined statistics.

- Sort the vocabulary by mutual information with the
class variable.

- Initialize the M clusters as singletons with the top
M words.

- Loop until all words have been put into one of the
M clusters:

- Merge the two clusters which are most similar
(Equation 9), resulting in M — 1 clusters.

- Create a new cluster consisting of the next
word from the sorted list, restoring the number
of clusters to M.

Table 2: The Algorithm

2.3 Distributional Clustering Minimizes
Error in Naive Bayes Score

Classification by naive Bayes is intimately related to in-
formation theory. It can easily be shown that, assuming
a uniform class prior, choosing the most probable class
by naive Bayes is identical to choosing the class that has
the minimal cross entropy with the test document.

Beginning with the naive Bayes classification formula
in equation 6, assume uniform class prior by dropping
P(c;|6), then make a series of transformations that do
not change which class gets the highest score: (1) drop
the denominator (which is a constant over all classes),
(2) transform the product over word position in the doc-
ument into an equivalent expression with a product over
words in the vocabulary, (3) take the log of the entire ex-
pression, and finally (4) divide by document length, |d;].
This results in

VI

— Y P(wi|di) - log (P(wiles;0)) (10)

which is precisely the expression of the cross entropy be-
tween the distribution of words in the document, P(W|d;)
and the distribution of words in the class P(W|c;) [3],
where W is a random variable over words.

Using this cross entropy as a representative of the
naive Bayes score for each class, we can express the “error
in naive Bayes score incurred by clustering two words.”
It is the difference between (1) the cross entropies be-
fore two words are joined and (2) cross entropy after two
words are joined.

Simple algebraic manipulation of this error expression
results exactly in equation 9, the weighted sum of two KL
divergences to the mean. Thus, we conclude, when words
are clustered according to this similarity metric, increase
in the “error in naive Bayes scores” is minimized.

2.4 Clustering Algorithm

Now we address the question of how to use the similar-
ity metric to form clusters. We create clusters with de-
terministic word membership using a simple, greedy ag-
glomerative approach that works well in practice, while
scaling extremely efficiently to large vocabulary sizes. In-
stead of comparing the similarity of all possible pairs of
words, (a daunting O(]V|?) operation), we consider all
pairs of a much smaller subset, of size M, where M is



the final number of clusters desired. At all stages, the al-
gorithm has not more than M clusters. The clusters are
initialized with the M words that have highest mutual in-
formation with the class variable. The most similar two
clusters are joined, then the next word is added as a sin-
gleton cluster to bring the total number of clusters back
up to M. Table 2 contains an outline of our algorithm.

In contrast, probabilistic “soft” clustering, as used in
previous Distributional Clustering work [20, 15], is more
formally rigorous, and allows the clustering to be less
greedy. However, we avoid the costly EM-style update
procedure that must be used to find a stable configura-
tion of the cluster centroids and the cluster membership
probabilities.

3 Related Work

Distributional Clustering has been used [20, 5, 15] to ad-
dress the problem of sparse data in building statistical
language models for natural language processing, but it
has not previously been applied to document classifica-
tion. We have used larger data sets with more prevalent
sparseness and fewer class labels.

ChiMerge [12] uses a form of Distributional Clustering
to discretize numeric attributes for subsequent classifica-
tion. It is an agglomerative, hard clustering algorithm
that uses the x” statistic as the the similarity metric.
We have also tried x? in our experiments and found that
the KL divergence average yields better performance.

Chi2 [18] is an extension of ChiMerge for use as a
feature selector of numeric attributes. Liu and Setiono
observe that if all the values of any attribute are clustered
together, then that value is irrelevant to the classification
task and can be removed.

Class-based clustering [1] uses an agglomerative, hard
clustering algorithm where the clustering criterion is de-
signed to maximize the overall average mutual informa-
tion between clusters and the class variable. This crite-
rion implicitly measures the similarity between the dis-
tributions P(C|w¢) and P(C|ws) as well as the similarity
between the distributions P(C|-w;) and P(C|-~ws) for
two features. We find that average mutual information
is not a good clustering criterion for text classification
with a multinomial naive Bayes model because it con-
siders the information about the class label that is indi-
cated by both the presence and the absence of a word in
a document, whereas the classifier only considers those
words that are present in a document. A clustering cri-
terion based only on class distributions given words that
do appear is better suited to a multinomial naive Bayes
classifier. We argue that KL-divergence is a good choice
among such criteria.

In that clustering reduces the dimensionality of fea-
ture space, our work can be seen as a form of feature se-
lection, although we do not actually remove any features.
A previous study found feature selection by mutual infor-
mation with the class label to be the best for text, among
several common, time/space-efficient methods [23].

However, mutual information between words and classes
does not capture dependencies between words. Koller
and Sahami present a Markov-blanket-based feature se-
lection algorithm that aims to address exactly this [13].
Their technique is based on the same principles as Dis-
tributional Clustering—it examines P(C|w;:), and tries
to preserve the proper C distribution.

Latent Semantic Indexing [6] is an unsupervised di-
mensionality reduction technique for information retrieval

that explicitly accounts for the dependencies between
words. In brief, it applies Principle Component Analysis
(PCA) to documents represented as word vectors. Du-
mais applies it to text classification [8] by representing
each class as a centroid, which is the vector sum of all
the feature vectors of all the documents in that class. A
new document is labelled with the class of the centroid
to which its feature vector is closest, as measured by the
cosine-similarity between the two vectors.

The Linear Least Squares Fit (LLSF) method [22] is
another classification algorithm based on PCA, which is
equivalent to Dumais’ use of LSI for classification except
that LLSF uses the dot-product to compute similarity
instead of the cosine and is thus sensitive to the length
of the two vectors being compared.

4 Experimental Results

This section provides empirical evidence that Distribu-
tional Clustering is able to aggressively reduce the num-
ber of features while maintaining high classification accu-
racy. At equal feature dimensionality, it achieves signif-
icantly higher accuracy than four other feature cluster-
ing and feature selection algorithms: supervised Latent
Semantic Indexing [8], class-based clustering [1], feature
selection by mutual information with the class variable
[23] and feature selection by a Markov-blanket method
[13].

The 20 Newsgroups data set, collected by Ken Lang,
contains about 20,000 articles evenly divided among 20
UseNet discussion groups [10]. Several of the topic classes
are quite confusable: four of them are about computers;
three discuss religion. In tokenizing the data we skipped
all UseNet headers, used a stoplist, but did not stem
because we found it to hurt accuracy. The resulting vo-
cabulary, after removing words that occur only once, has
62258 words.

The ‘ModApte’ test/train split of the Reuters-21578
data set (http://www.research.att.com/~lewis) contains
9603 training documents and 3299 testing documents,
gathered from the Reuters newswire. There are 135 over-
lapping topic categories, but we used only those 90 for
which there exists at least one training and one testing
document. The number of training documents per class
varies from 1 to nearly 4000. The largest 10 classes con-
tain 77.5% of the documents; 28 classes have fewer than
10 training documents. We removed all words that had
less than three occurrences. The resulting vocabulary
has 16177 words.

We gathered the entirety of the Yahoo! ‘Science’ hier-
archy in July 1997. The 6294 web pages are divided into
41 disjoint classes by chopping the hierarchy two levels
deep. After removing stopwords and words that occur
only once, the vocabulary contains 44383 words.

Figure 2 (top) shows classification accuracy results on
the 20 Newsgroups data set for four of the five methods
considered. The horizontal axis indicates the number of
features that were used in the classification model, and
the vertical axis the percentage of the test documents
that were correctly classified. Results are averages of 5-
20 trials of randomized 1/3-2/3 test-train splits, except
in the case of supervised LSI, which uses only 1/3 for
training instead, because training was too slow on 13000
articles. Thus, for comparison, we show two performance
curves for Distributional Clustering, one with 2/3 train-
ing and one with 1/3 training. Notice that with only 50
features (a reduction of more than three orders of magni-
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Figure 2: Top: Classification accuracy on the 20 News-
groups data set, for varying numbers of features. The
two highest curves are both for Distributional Cluster-
ing. The (extremely tight) bars on each data point show
standard error. Bottom: Classification accuracy on a
subset of the 20 Newsgroups data set. Temporary tech-
nical problems prevent the curve for the Markov-blanket
feature selector from continuing under five features.

tude) Distributional Clustering achieves 82.1% accuracy,
only 2% lower than at the full vocabulary. In comparison,
supervised LSI reaches only 60% accuracy. Feature se-
lection by mutual information and class-based clustering
are lower still with 46.3% and 14.5% respectively.

Furthermore, note that Distributional Clustering ac-
tually provides a small, but statistically-significant in-
crease over the best performance possible without clus-
tering. The highest accuracy without clustering is 84.2%,
with the full vocabulary. All of our clustering results
with more than 400 features are higher than this; the
best, with 1200 clusters, is 85.7%. The increased perfor-
mance indicates that Distributional Clustering is provid-
ing slightly more accurate estimates of 6, ;. Supervised
LSI never resulted in higher accuracy than the raw fea-
ture set on this data.

The Markov blanket feature selector is missing from
this graph because, due to the memory and CPU require-
ments of the algorithm, we were not able to run it on the
full data set. The bottom graph in Figure 2 shows results
on a corpus consisting of only the three talk.politics.*
classes of the 20 Newsgroups data set. This reduced data
set has 3000 documents, and after removing words occur-
ring in fewer than 50 documents, a 1407 word vocabulary.

The performance of Distributional Clustering on this
data set is striking. Not only is it consistently better
than the other techniques, but with only three features
it maintains accuracy near 80% while the other tech-
niques fall into the 50’s and 40’s. Examination of the
three features show clusters indicative of each of the three

classes. The Markov-blanket feature selector sometimes
performed slightly better than feature selection by mu-
tual information, but mostly performed about the same
or worse. We believe Distributional Clustering performs
better than feature selection because merging preserves
information instead of discarding it. Some features that
are infrequent, but useful when they do occur, get re-
moved by the feature selector; feature merging keeps
them.

Clustering with LSI also has the advantage that it
combines information rather than discarding it. And, in-
deed the top graph shows LSI out-performing the mutual-
information-based feature selector. However, the initial
dimensionality reduction in LSI is unsupervised, whereas
Distributional Clustering is supervised. Supervised tech-
niques can take advantage of the class labels in order to
concentrate their efforts on the specific task at hand. We
believe this difference explains the accuracy increase of
Distributional Clustering over LSI in the top graph. Lin-
ear Discriminant Analysis [11] is a supervised technique
similar to LSI which we feel may work well for text clas-
sification, although we have not yet experimented with
this technique.

Since LSI takes advantage of word co-occurrences, we
thought that perhaps the traditional LSI classification
method may not put LSI in its best light. (The tra-
ditional method classifies test documents by measuring
cosine-similarity to a class centroid. The class centroid is
an average of all the training documents in the class, and
thus, like naive Bayes, loses document boundaries and
word co-occurrence statistics.) We tested this hypothe-
sis by replacing the centroid distance component with a
nearest neighbor classifier that measures distances to all
the individual training documents. The change did in-
deed increase LSI’s performance from 73.7% to 74.9% at
400 features, but still did not beat Distributional Clus-
tering’s naive Bayes performance of 80.0%. Note also
that nearest neighbor is more computationally expensive
than centroid methods.

Of all the techniques in this comparison, class-based
clustering performed worst. As discussed in the previous
section, this technique is not a good match for classifica-
tion with a multinomial naive Bayes model.

On the 20 Newsgroups data set, wall clock training
times for the algorithms are: our Distributional Cluster-
ing 7.5 minutes, LSI 23 minutes, Markov-blanket feature
selection 10 hours, mutual information feature selection
30 seconds.

Figure 3 shows classification accuracy results on Reuters-
21578. Again, when the number of features is small, Dis-
tributional Clustering outperforms the other methods. In
this data set a document can be labelled with multiple
classes. A prediction for a test document is considered
correct if it is any one of the given classes.

Figure 4 shows classification accuracy results on the
Yahoo! data set. Unlike the other two data sets, here fea-
ture selection improves performance significantly. With
all features, naive Bayes gets 52.9% accuracy; naive
Bayes obtains 66.4% by using just the 500 features that
have highest mutual information with the class label.
This is a case in which “losing information” is beneficial,
because the data are so noisy that the information hurts
more than it helps.

Distributional Clustering, when used as a substitute
for feature selection (i.e. clustering with all the words),
does provide some benefit over the raw feature space (see
the “all words” line in figure 4), however, it gets even
better performance if it begins clustering with only the
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Figure 3: Classification accuracy on the Reuters-21578
data set. Computational constraints prevented us from
getting results with LSI and Markov-blanket feature se-
lection in time for the submission.
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Figure 4: Classification accuracy on the Yahoo! data set,
averaged over 10 runs. The error bars on each data point
show standard error.

500 selected features, (the “500 words” line). This result
indicates that Distributional Clustering was somewhat
able to overcome noise by clustering, but further sug-
gests that there is a place for feature-selection—feature-
clustering combinations. Principled approaches to com-
binations of feature selection and feature merging will be
a topic of future work.

5 Discussion

We have shown that Distributional Clustering is an effec-
tive technique for reducing the number of features needed
for text classification. We are able to reduce the feature
space by one to three orders of magnitude while losing
only a few percent in classification accuracy. This result
is important because, as the use of text classification be-
comes more widespread, and its application more diverse,
the size of classification models is of increasing concern.
Furthermore, the reduced dimensionality will allow the
application of more complex methods.

We found that Distributional Clustering is better
than feature selection at preserving the information con-
tained in redundant features. It allows the size of the
model to be reduced much more aggressively while main-
taining good performance. However, it is still susceptible
to detrimental features.

Earlier work with Distributional Clustering [20, 15]
shows that Distributional Clustering addresses the sparse
data problem (improving what were previously detrimen-

tal features). We also observed a small increase in classifi-
cation accuracy, but this happened only on the one data
set with the most, and most evenly distributed, data.
We are not surprised that Distributional Clustering does
not address the sparse data problem in more of our ex-
periments because it clusters words based on the same
estimate that affects performance. If we have a bad es-
timate of P(C|w;) to begin with, our clustering criterion
is strongly biased toward preserving that distribution, so
that we will not overcome our lack of data. We hypothe-
size that previous work in Distributional Clustering saw
sparse data improvements because (1) their data was not
as sparse as ours (2) they had more target variable val-
ues, thus a larger number of “correct” P(cj|w;) values
on which to pattern-match in order to fill in a “bad”
P(cj|w;) estimate. We are currently investigating ways
to augment Distributional Clustering to address this de-
ficiency.

We also plan to look at techniques for sensibly com-
bining feature clustering and feature selection to take ad-
vantage of the strengths of both, and to overcome the
need for specifying in advance the number of clusters to
create or features to remove.

As previously mentioned, LSI is an unsupervised di-
mensionality reduction technique based on the Singular
Value Decomposition of a term-document matrix. The
underlying technique in LSI is to find an orthonormal
basis for the term-document space for which the axes
lie along the dimensions of maximum variance. Linear
Discriminant Analysis [11] is a related technique which
instead attempts to find a basis such that the distance
between the means of the members of each class is maxi-
mized while the variance within each class is minimized.
We plan to investigate its use for text classification.
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