Linguistic Structure as Composition and Perturbation

Carl de Marcken
MIT AI Laboratory, NE43-769
545 Technology Square
Cambridge, MA, 02139, USA

cgdemarc@ai.mit.edu

Abstract

This paper discusses the problem of learn-
ing language from unprocessed text and
speech signals, concentrating on the prob-
lem of learning a lexicon. In particular, it
argues for a representation of language in
which linguistic parameters like words are
built by perturbing a composition of exist-
ing parameters. The power of this repre-
sentation is demonstrated by several exam-
ples in text segmentation and compression,
acquisition of a lexicon from raw speech,
and the acquisition of mappings between
text and artificial representations of mean-
ing.

1 Motivation

Language is a robust and necessarily redundant
communication mechanism. Its redundancies com-
monly manifest themselves as predictable patterns
in speech and text signals, and it is largely these
patterns that enable text and speech compression.
Naturally, many patterns in text and speech re-
flect interesting properties of language. For ex-
ample, the is both an unusually frequent sequence
of letters and an English word. This suggests us-
ing compression as a means of acquiring under-
lying properties of language from surface signals.
The general methodology of language-learning-by-
compression is not new. Some notable early propo-
nents included Chomsky (1955), Solomonoff (1960)
and Harris (1968), and compression has been used
as the basis for a wide variety of computer programs
that attack unsupervised learning in language; see
(Olivier, 1968; Wolff, 1982; Ellison, 1992; Stolcke,
1994; Chen, 1995; Cartwright and Brent, 1994)

among others.

1.1 Patterns and Language

Unfortunately, while surface patterns often reflect
interesting linguistic mechanisms and parameters,
they do not always do so. Three classes of exam-
ples serve to illustrate this.

1.1.1 Extralinguistic Patterns

The sequence it was a dark and stormy night is
a pattern in the sense it occurs in text far more
often than the frequencies of its letters would sug-
gest, but that does not make it a lexical or gram-
matical primitive: it is the product of a complex
mixture of linguistic and extra-linguistic processes.
Such patterns can be indistinguishable from desired
ones. For example, in the Brown corpus (Francis and
Kucera, 1982) scratching her nose occurs 5 times,
a corpus-specific idiosyncrasy. This phrase has the
same structure as the idiom kicking the bucket. It is
difficult to imagine any induction algorithm learn-
ing kicking the bucket from this corpus without also
(mistakenly) learning scratching her nose.

1.1.2 The Definition of Interesting

This discussion presumes there is a set of desired
patterns to extract from input signals. What is this
set? For example, is kicking the bucket a proper lexi-
cal unit? The answer depends on factors external to
the unsupervised learning framework. For the pur-
poses of machine translation or information retrieval
this sequence is an important idiom, but with re-
spect to speech recognition it is unremarkable. Sim-
ilar questions could be asked of subword units like
syllables. Plainly, the answers depends on the learn-
ing context, and not on the signal itself.

1.1.3 The Definition of Pattern

Any statistical definition of pattern depends on
an underlying model. For instance, the sequence the
dog occurs much more frequently than one would ex-
pect given an independence assumption about let-
ters. But for a model with knowledge of syntax
and word probabilities, there is nothing remarkable
about the phrase. Since all existing models have
flaws, patterns will always appear that are artifacts
of imperfections in the learning algorithm.

These examples seem to imply that unsupervised
induction will never converge to ideal grammars and
lexicons. While there is truth to this, the rest of this
paper describes a representation of language that
bypasses many of the apparent difficulties.

[national football league]

[national] [football] [league]

O\

[nation] [al] [foot] [ball] [lea] [gue]
A AR
WO N N

[n] [t] [b] 1 (8]

Figure 1: A compositional representation.

2 A Compositional Representation

The examples in sections 1.1.1 and 1.1.2 seem to
imply that any unsupervised language learning pro-
gram that returns only one interpretation of the in-
put is bound to make many mistakes. And sec-
tion 1.1.3 implies that decisions about linguistic
units must be made relative to their representations.
Both of these issues are addressed if linguistic units
(for now, words in the lexicon) are built by com-
posing other units. For example, kicking the bucket
might be represented by the composition of kicking,
the and bucket.! Of course, words that are merely
the composition of their parts are uninteresting and
need not be included in the lexicon. The motivation
for including a word in the lexicon must be that it
behaves differently than its parts imply. If this is
the case, a word is a perturbation of a composition.

In the case of kicking the bucket the perturbation
is one of both meaning and frequency. For scratching
her nose the perturbation may just be of frequency.?
This is a very natural representation from the view-
point of language. It correctly predicts that both
phrases inherit their sound and syntax from their
component words. At the same time it leaves open
the possibility that idiosyncratic information will be
attached to the whole, as with the meaning of kick-
ing the bucket. This structure is very much like the
class hierarchy of a modern programming language.
It is not the same thing as a context-free grammar,
since each word does not act in the same way as the
default composition of its components.

Figure 1 illustrates a recursive decomposition (un-
der concatenation) of the phrase national football
league. The phrase is broken into three words, each
of which are also decomposed in the lexicon. This
process bottoms out in the terminal characters. This
is a real decomposition achieved by a program de-

!The simplest composition operator is concatenation;
sections 5 and 6 discuss more interesting ones.

?Naturally, an unsupervised learning algorithm with
no access to meaning will not treat these two examples
differently.

Code Length Components
000 (= cor) 2 Co, Cs

001 (: cthe) 3 Cty Ch, Ce

010 (= ¢in) 2 ¢, Cn

0110 (= Cuome) 4 Cs, Co, Comy Ce
0111 (: csomeofthe) 3 Csome) Cof;s Cthe

10000 ...

Figure 2: A coding of the first few words of a hypo-
thetical lexicon. The first two columns can be coded
succinctly, leaving the cost of pointers to component
words as the dominant cost of both the lexicon and
the representation of the input.

scribed in section 4. Not shown are the perturba-
tions (in this case merely probability specifications)
that distinguish each word from its parts. This gen-
eral framework extends to other perturbations. For
example, the word wanna is naturally thought of as
a composition of want and to with a sound change.
And in speech the three different words to, two and
too may well inherit the sound of a common ancestor
while introducing new syntactic and semantic prop-
erties.

2.1 Coding

Of course, for this representation to be more than
an intuition both the composition and perturbation
operators must be exactly specified. In particular, a
code must be designed that enables a word (or the
input) to be expressed in terms of its parts. As a sim-
ple example, suppose that the composition operator
is concatenation, that terminals are characters, and
that the only perturbation operator is the ability to
express the probability of a word independently of
the probability of its parts. Then to code either the
input or a (nonterminal) word in the lexicon, the
number of component words in the representation
is written, followed by a code for each component
word. Naturally, each word in the lexicon must also
be linked to its code, and under a near-optimal cod-
ing scheme like a Huffman code, the code length will
be related to the probability of the word. Thus, link-
ing a word to a code serves also to specify the word’s
probability, its only perturbation. Furthermore, if
words are written down in order of decreasing prob-
ability, a Huffman code for a large lexicon can be
specified using a negligible number of bits (provid-
ing the number of codes of each length is sufficient).
This and the near-negligible cost of writing down the
number of components in word representations will
not be discussed further. Figure 2 presents a portion
of an encoding of a hypothetical lexicon under this
scheme.

2.2 MDL

Given a coding scheme and a particular lexicon (and
a parsing algorithm) it is in theory possible to calcu-
late the minimum length encoding of a given input.
Part of the encoding will be devoted to the lexicon,
the rest to representing the input in terms of the
lexicon. The lexicon that minimizes the combined
description length of the lexicon and the input max-
imally compresses the input. In the sense of Rissa-
nen’s minimum description-length (MDL) principle
(Rissanen, 1978; Rissanen, 1989) this lexicon is the
theory that best explains the data, and one can hope
that the patterns in the lexicon reflect the underly-
ing mechanisms and parameters of the language that
generated the input.

2.3 Properties of the Representation

Representing words in the lexicon as perturbations
of compositions has a number of desirable properties.

e The choice of composition and perturbation op-
erators captures a particular detailed theory of
language. They can be used, for instance, to
reference sophisticated phonological and mor-
phological mechanisms.

e The length of the description of a word is a mea-
sure of its linguistic plausibility, and can serve
as a buffer against learning unnatural coinci-
dences.

e Coincidences like scratching her nose do not ex-
clude desired structure, since they are further
broken down into components that they inherit
properties from.

e Structure is shared: the words blackbird and
blackberry can share the common substructure
associated with black, such as its sound and
meaning. As a consequence, data is pooled for
estimation, and representations are compact.

e Common irregular forms are compiled out. For
example, if went is represented in terms of go
(presumably to save the cost of unnecessarily
reproducing syntactic and semantic properties)
the complex sound change need only be repre-
sented once, not every time went is used.

e Since parameters (words) have compact repre-
sentations, they are cheap from a description
length standpoint, and many can be included
in the lexicon. This allows learning algorithms
to fit detailed statistical properties of the data.

This coding scheme is very similar to that found in
popular dictionary-based compression schemes like
LZ78 (Ziv and Lempel, 1978). It is capable of com-
pressing a sequence of identical characters of length
n to size O(logn). However, in contrast to compres-
sion schemes like LZ78 that use deterministic rules
to add parameters to the dictionary (and do not ar-
rive at linguistically plausible parameters), it is pos-

sible to perform more sophisticated searches in this
representation.

3 A Search Algorithm

Since the class of possible lexicons is infinite, the
minimization of description length is necessarily in-
exact and heuristic. Given a fixed lexicon, the
expectation-maximization algorithm (Dempster et
al., 1977) can be used to arrive at a (locally) op-
timal set of probabilities and codelengths for the
words in the lexicon. For composition by concate-
nation, the algorithm reduces to the special case of
the Baum-Welch procedure (Baum et al., 1970) dis-
cussed in (Deligne and Bimbot, 1995). In general,
however, the parsing and re-estimation involved in
EM can be considerably more complicated. To up-
date the structure of the lexicon, words can be added
or deleted from it if this is predicted to reduce the
description length of the input. This algorithm is
summarized in figure 3.3

Start with lexicon of terminals.
Iterate
Tterate (EM)
Parse input and words using current lexicon.
Use word counts to update probabilities.
Add words to the lexicon.
Iterate (EM)
Parse input and words using current lexicon.
Use word counts to update probabilities.
Delete words from the lexicon.

Figure 3: An iterative search algorithm. Two it-
erations of the inner loops are usually sufficient for
convergence, and for the tests described in this pa-
per after 10 iterations of the outer loop there is little
change in the lexicon in terms of either compression
performance or structure. This algorithm is quite
practical for the sizes of problems presented in this

paper.

3.1 Adding and Deleting Words

For words to be added to the lexicon, two things are
needed. The first is a means of hypothesizing can-
didate new words. The second is a means of evalu-
ating candidates. One reasonable means of generat-
ing candidates is to look at pairs (or bigger tuples)
of words that are composed in the parses of words
and the input. So long as the composition opera-
tor is associative, a new word can be created from

?For the composition operators and test sets we have
looked at, using single (Viterbi) parses produces almost
exactly the same results (in terms of both compression
and lexical structure) as summing probabilities over mul-
tiple parses.

such a pair and substituted in place of it wherever
it appears. For example, if water and melon are fre-
quently composed, then a good candidate for a new
word is water o melon = watermelon, where o is the
composition operator. In order to evaluate whether
the addition of such a new word is likely to reduce
the description length of the input, it is necessary
to record during the EM step posterior counts ¢(1V)
for each composed word pair W = w; o ws.

The effect on the description length of adding a
new word can not be exactly computed. Its addition
will not only affect the counts of other words, but
may also cause other words to be added or deleted.
Fortunately, simple approximations of the change
are adequate for evaluating word candidates. For
example, if Viterbi analyses are being used then the
new word W (if worth adding at all) will completely
replace all compositions of w; and wsg, though each
of these words will be used once in the representation
of W. Therefore, if ¢(w) is the count of a word w be-
fore W is added to the lexicon, and ¢/(w) the count
after, then under the assumption that otherwise
parses are stable across the change, ¢/(W) = ¢(W),
d(wy) = e(wr)—c(W)+1, ¢/ (wz) = e(wz) —c(W)+1
and otherwise ¢/(w) = c¢(w). Of course, all word
probabilities change because of the change in total
word count. Since the codelength of a word w with
probability p(w) is approximately — log p(w), the es-
timated total change in description length caused by
adding a new word W to a lexicon L is

A ~ —(W)logp' (W) + d.l.(changes) +

Z (= (w)logp' (w) + ¢(w)log p(w))

weL

where d.l.(changes) represents the cost of writing
down the perturbations involved in the representa-
tion of W.* This can be computed quite efficiently.
If A <0 the word W is predicted to reduce the to-
tal description length and is added to the lexicon.
In our implementation, all candidates with negative
A are added simultaneously; subsequent delete steps
can fix mistakes.

Similar heuristic approximations can be used to
estimate the benefit of deleting words. In that case,
a reasonable assumption is that if a word is deleted
its representation replaces it everywhere. Again this
is not necessarily correct, but serves adequately.

*See (de Marcken, 1995b) for more detailed discus-
sion of approximations. The actual schemes used in the
tests discussed in this paper are slightly more compli-
cated than those presented here. For example, it is not
assumed that the representation of W after the change
will necessarily be w; o w2 and the possibility that ei-
ther or both of w1 and w2 will subsequently be deleted
is considered. Further, unless Viterbi analyses are being
used, ¢'(W) is not assumed to be exactly ¢(W).

3.2 Search Properties

Local optima debilitate many traditional grammar
induction techniques (de Marcken, 1995a; Pereira
and Schabes, 1992; Carroll and Charniak, 1992).
The search algorithm described above generally es-
capes this problem, in large part because of the un-
derlying representation. The reason is that hidden
structure is largely a “compile-time” phenomena.
During parsing all that is important about a word is
its surface form and codelength. The internal rep-
resentation does not matter. Therefore, the internal
representation is free to reorganize at any time; it
has been decoupled. This allows structure to be built
bottom up or for structure to emerge inside already
existing parameters. Furthermore, since parameters
(words) encode surface patterns, their use is con-
strained and they tend not have competing roles, in
contrast, for instance, to hidden nodes in neural net-
works. And since the number of parameters is not
fixed, when words do start to have multiple conflict-
ing roles, they can be split with common substruc-
ture shared. Finally, since add and delete cycles can
compensate for initial mistakes, inexact heuristics
can be used for adding and deleting words.

4 Concatenation Results

The simplest reasonable instantiation of the
composition-and-perturbation framework is with the
concatenation operator and probability perturba-
tion. This instantiation has been tested on problems
of text segmentation and compression. Given a text
document, the search algorithm tries to find the lex-
icon that minimizes total description length. For
testing purposes, delimiters like spaces and punctu-
ation are removed from the input. Define true words
to be minimal character sequences bordered by de-
limiters in the original input. Since the search algo-
rithm parses the input as it compresses it, it can out-
put the optimal segmentation of the input into words
drawn from the lexicon. These words are themselves
decomposed in the lexicon, and can be considered
to form a tree that terminates in characters. This
tree can have no more than O(n) nodes for an input
of length n, even though there are O(n?) possible
true words in such an input; thus, the segmenta-
tion tree contains considerable information. Define
recall to be the percentage of true words that oc-
cur at some level of the segmentation tree. Define
crossing-brackets to be the percentage of true words
that violate the segmentation tree structure.’

The algorithm was applied to two texts, a low-
ercase version of the million-word Brown corpus
with spaces and punctuation removed, and 4 mil-
lion characters of Chinese news articles in a two-

®The true word moon in the input the moon is a
crossing-bracket violation of them in the (partial) seg-
mentation tree [[them][o][on]].

byte/character format. In the case of the Chinese,
which contains no inherent separators like spaces,
segmentation performance is measured relative to
another computer segmentation program that had
access to a (human-created) lexicon. The algorithm
was given the raw encoding and had to deduce the
internal two-byte structure. In the case of the Brown
corpus, word recall was 90.5% and crossing-brackets
was 1.7%. For the Chinese word recall was 96.9%
and crossing-brackets was 1.3%. In the case of both
English and Chinese, most of the recall violations
were words that occurred only once in the corpus.
Thus, the algorithm did an extremely good job of
learning words and properly using them to segment
the input. Furthermore, the crossing-bracket mea-
sure indicates that the algorithm makes very few
clear mistakes. Of course, the hierarchical lexical
representation does not make a commitment to what
levels are “true words” and which are not; about five
times more nodes exist in the segmentation tree than
true words. Experiments in section 5 demonstrate
that for most applications this excess structure is not
only not a problem, but desirable. Figure 4 displays
some of the lexicon learned from the Brown corpus.

The algorithm was also run as a compressor
on a lower-case version of the Brown corpus with
spaces and punctuation left in. All bits neces-
sary for exactly reproducing the input were counted.
Compression performance is 2.12 bits/char, signifi-
cantly lower than popular algorithms like gzip (2.95
bits/char). This is the best text compression result
on this corpus that we are aware of, and should not
be confused with lower figures (Brown et al., 1992)
that do not include the cost of parameters. Further-
more, because the compressed text is stored in terms
of linguistic units like words, it can be searched, in-
dexed, and parsed without decompression.

5 Learning Meanings

Unsupervised learning algorithms are rarely used in
isolation. The goal of this work has been to ex-
plain how linguistic units like words can be learned,
so that other processes can make use of these
units. In this section a means of learning the map-
pings between words and artificial representations
of meanings is described. The composition-and-
perturbation representation handles this application
neatly.

Imagine that text utterances are paired with rep-
resentations of meaning,® and that the goal is to find
the minimum-length description of both the text and
the meaning. If there is mutual information between
the meaning and text portions of the input, then
better compression is achieved if the two streams
are compressed simultaneously than independently.

5This framework is easily extended to handle multi-
ple ambiguous meanings (with and without priors) and
noise, but these extensions are not discussed here.

Word
0 [s]

1 [thel
2 [and]
3 [al
4

5

[of]
[in]
6 [tol

500 [students]

501 [materiall

502 [um]

503 [words]

504 [period]

505 [class]

506 [question]
5000 [[ing] [them]]
5001 [[mon][k]1]
5002 [[rel[lax]]
5003 [[rigl[id]]
5004 [[connect][ed]]
5005 [[i] k1]

5006 [[hul [t]]

26000 [[pleural][blood][supply]l]

26001 [[anordinary] [happy] [family]]

26002 [[f][eas][ibility] [of]]

26003 [[lunar] [brightness] [distribution]]
26004 [[primarily][diff] [using]]

26005 [[sodium][tri] [polyphosphate]]
26006 [[charcoall[broil] [ed]]

Figure 4: Sections of a 26,027 word lexicon learned
from the Brown corpus, ranked by frequency. The
words in the less-frequent half are listed with
their first-level decomposition. Word 5000 causes
crossing-bracket violations, and words 26002 and
26006 have internal structure that causes recall vio-
lations.

If a text word has an associated meaning, then writ-
ing down that word to account for some portion of
text also accounts for some portion of the meaning
of that text. The remaining meaning can be written
down more succinctly. Thus, there is an incentive
to associate meaning with sound, although of course
the association pays a price in the description of the
lexicon.

Although it is obviously a naive simplification,
many of the interesting properties of the composi-
tional representation surface even when meanings
are treating as sets of arbitrary symbols. A word is
now both a character sequence and a set of meaning
symbols. The composition operator concatenates
the characters of its operands and takes the union
of their meaning symbols. Of course, there must
be some way to perturb the default meaning of a
word. One way to do this is to explicitly write out
any symbols that are present in the word’s meaning
but not in its components, or wvice versa. Thus, the
word red {RED} might be represented as r o e o

d+RED. Given an existing word berry {BERRY },
the red berry cranberry {RED BERRY} can be rep-
resented ¢ o ro ao no berry {BERRY}+RED.

5.1 Results

To test the algorithm’s ability to infer word mean-
ings, 10,000 utterances from an unsegmented textual
database of mothers’ speech to children were paired
with representations of meaning, constructed by as-
signing a unique symbol to each root word in the vo-
cabulary. For example, the sentence andwhatishep-
aintingapictureofis paired with the unordered mean-
ing { AND WHAT BE HE PAINT A PICTURE
OF }.7 In the first experiment, the algorithm re-
ceived these pairs with no noise or ambiguity, using
a perturbation operator such that each symbol’s cost
was 10 bits. After 8 iterations of training on the text
portion of the input and then a further § iterations
of training on both the text and the meaning, the
text was parsed again. The meanings of the result-
ing word sequences (as defined by the lexicon) were
compared with the true meaning of the input. Sym-
bol accuracy was 98.9%, recall was 93.6%. Used to
identify the true meaning from among the meanings
of the previous 20 sentences, the program selected
correctly 89.1% of the time, or ranked the true mean-
ing tied for first 10.8% of the time.

A second test was performed in which during
training the algorithm received three possible mean-
ings for each utterance, the true one and also the
meanings of the two surrounding utterances. A uni-
form prior was used. Despite the ambiguity, during
testing symbol accuracy was again 98.9%, recall was

75.3%.

The final lexicon includes extended phrases, but
meanings tend to filter down to the proper level. For
instance, although the words duck, ducks, theducks
and duckdrink are all in the lexicon and contain the
meaning DUCK, the symbol is only written once,
in the description of duck. All others words inherit
the symbol from this word. Similar results hold for
similar experiments on the Brown corpus. For ex-
ample, scratching her nose inherits its meaning com-
pletely from its parts, while kicking the bucket does
not. This is exactly the result argued for in the mo-
tivation section of this paper, and illustrates why in
our framework there is little harm in occasionally
adding unnecessary words like scraiching her nose
to the lexicon.

"The unordered nature of the second data stream
greatly increases the complexity of the EM algorithm,
which can no longer be implemented efficiently through
dynamic programming. Although too complex to be dis-
cussed here, in our implementation a factorial approxi-
mation is used to succinctly and efficiently represent for-
ward and backward probabilities.

6 Other Extensions

We have performed other experiments using this rep-
resentation and search algorithm, on tasks in un-
supervised learning from speech and grammar in-
duction. Figure 5 contains a small portion of a
lexicon learned from 55,000 utterances of continu-
ous speech by multiple speakers. The utterances
are taken from dictated Wall Street Journal articles.
The concatenation operator was used with phonemes
as terminals. A second layer was added to the frame-
work to map from phonemes to speech; these exten-
sions are described in more detail in (de Marcken,
1995b). The sound models for the phonemes were es-
timated independently on a separate corpus of hand-
segmented speech. Although the phoneme models
are extremely poor, many words are recognizable,
and this is the first significant lexicon learned di-
rectly from spoken speech without supervision.

If the composition operator makes use of context,
then this framework extends naturally to a varia-
tion of stochastic context-free grammars in which
composition corresponds to tree substitution and
the inside-outside algorithm (Baker, 1979) is used
for re-estimation. In particular, if each word is as-
sociated with a parent class, and these classes are
permissible terminals, then “words” act as produc-
tion rules. For example, a possible word with class
vp is Lyptake off<np>], which can be represented by
Lop<v><p><np>]o[ytakelolpofflolnpo]l where o is
a special symbol that indicates a class is not ex-
panded. Furthermore, [yp<v><p><np>] may be de-
composed into [yp<v><pp>Jo[yololpp<p><np>]. In
this way syntactic structure emerges in the inter-
nal representation of relatively flat production rules.
This framework offers the significant advantage that
non-independent rule expansions can be accounted
for without sacrificing structure. We are currently
looking at various methods for automatically acquir-
ing classes; in initial experiments some of the first
classes learned from text are the class of vowels, of
consonants, and of verb endings.

7 Conclusions

No previous unsupervised language-learning proce-
dure has produced structures that match so closely
with linguistic intuitions. We take this as a vindi-
cation of the perturbation-of-compositions represen-
tation. Its ability to capture the statistical and lin-
guistic idiosyncrasies of large structures without sac-
rificing the obvious regularities within them makes it
a valuable tool for a wide variety of induction prob-
lems.

This research was supported in part by NSF
grant 9217041-ASC and ARPA under the HPCC and
AASERT programs.

Rank w rep(w)
5392 [wormr] [[wor|mr]
5393 [0auzn] [0[auzn]]
5394 [tohid] [toh]1d]
5395 [ektid] ek[t1d]]
5396 [Aniin] [an[iin]]
5397 [meliindalrz] [meliindalr]z]
8948 [aidiiz] [ai]diiz]
8949 [sikrti] [stk[rti]]
8950 [loptaim)] [log][taim]]
8951 [sekgin] [sek][gIn]]
8952 [wanpa] [[wan]pa]
8953 [vendér] v[en][dér]]
8954 [olimInei] o[limin][ei]]
8955 [meliin] [[mel]ifin]]
8956 [beliindal] be[liindal]]
9164 [gouldminsaks] [[goul]d[min]s[aeks]]
9165 [kmpgutr] [[kmp][sut]r]
9166 [gavrmin] ga[vrmin]]
9167 [oublzohuou] [oubl][zehuoul]]
9168 [ministreidin] [[min]i[streisin]]
9169 [tjerin] tje]r[in]]
9170 [hablhohwou] habl][hehwoul]
9171 [sampdip] [s[amp][din]]
9172 [prplouzl] pr][plou]zl]
9173 [bouskgi] bou][skg]i]
9174 [kgedjil] [[kge][dji]]]
9175 [gouldmaiinz] goul]d[maiinz]]
9176 [korpreitid] korpr][eitid]]

Figure 5: Some words from a lexicon learned from
55,000 utterances of continuous, dictated Wall Street
Journal articles. Although many words are little
more than random gibberish, words representing
million dollars, Goldman-Sachs, thousand, etc. are
learned. Furthermore, as word 8950 (long time)
demonstrates, they are often properly decomposed
into components.

References

J. K. Baker. 1979. Trainable grammars for speech
recognition. In Proceedings of the 97th Meeting of the
Acoustical Society of America, pages 547-550.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. 1970.
A maximization technique occuring in the statistical
analysis of probabilistic functions in Markov chains.
Annals of Mathematical Statistics, 41:164-171.

P. L. Brown, S. A. Della Pietra, V. J. Della Pietra, J. C.
Lai, and R. L. Mercer. 1992. An estimate of an up-
per bound for the entropy of english. Computational
Linguistics, 18(1):31-40.

G. Carroll and E. Charniak. 1992. Learning proba-
bilistic dependency grammars from labeled text. In
Working Notes, Fall Symposium Series, AAAI pages
25-31.

T. A. Cartwright and M. R. Brent. 1994. Segment-
ing speech without a lexicon: Evidence for a boot-
strapping model of lexical acquisition. In Proc. of the
16th Annual Meeting of the Cognitive Science Society,
Hillsdale, New Jersey.

S. F. Chen. 1995. Bayesian grammar induction for lan-
guage modeling. In Proc. 32nd Annual Meeting of
the Association for Computational Linguistics, pages
228-235, Cambridge, Massachusetts.

N. A. Chomsky. 1955. The Logical Structure of Linguis-
tic Theory. Plenum Press, New York.

C. de Marcken. 1995a. Lexical heads, phrase structure
and the induction of grammar. In Third Workshop on
Very Large Corpora, Cambridge, Massachusetts.

C. de Marcken. 1995b. The unsupervised acquisition of
a lexicon from continuous speech. Memo A.l. Memo
1558, MIT Artificial Intelligence Lab., Cambridge,
Massachusetts.

S. Deligne and F. Bimbot. 1995. Language modeling
by variable length sequences: Theoretical formulation
and evaluation of multigrams. In Proceedings of the
International Conference on Speech and Signal Pro-
cessing, volume 1, pages 169-172.

A. P. Dempster, N. M. Liard, and D. B. Rubin. 1977.
Maximum liklihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
B(39):1-38.

T. M. Ellison. 1992. The Machine Learning of Phono-
logical Structure. Ph.D. thesis, University of Western
Australia.

W. N. Francis and H. Kucera. 1982. Frequency analysis
of English usage: lexicon and grammar. Houghton-

Mifflin, Boston.

7. Harris. 1968. Mathematical Structure of Language.
Wiley, New York.

D. C. Olivier. 1968. Stochastic Grammars and Language
Acquisition Mechanisms. Ph.D. thesis, Harvard Uni-
versity, Cambridge, Massachusetts.

F. Pereira and Y. Schabes. 1992. Inside-outside rees-
timation from partially bracketed corpora. In Proc.
29th Annual Meeting of the Association for Compu-
tational Linguistics, pages 128—135, Berkeley, Califor-
nia.

J. Rissanen. 1978. Modeling by shortest data descrip-
tion. Automatica, 14:465-471.

J. Rissanen. 1989. Stochastic Complexity in Statistical
Inquiry. World Scientific, Singapore.

R. J. Solomonoff. 1960. The mechanization of linguis-
tic learning. In Proceedings of the 2nd International
Conference on Cybernetics, pages 180-193.

A. Stolcke. 1994. Bayesian Learning of Probabilistic
Language Models. Ph.D. thesis, University of Califor-
nia at Berkeley, Berkeley, CA.

J. G. Wolff. 1982. Language acquisition, data compres-
sion and generalization. Language and Communica-
tion, 2(1):57-89.

J. Ziv and A. Lempel. 1978. Compression of individual
sequences by variable rate coding. IEEFE Transactions
on Information Theory, 24:530-536.

