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In a review of Eugene Charniak’s book “Statistical Language Learning” in
Computational Linguistics Vol. 21, No. 1 of March, 1995, David Magerman
writes:

The $64,000 question in computational linguistics these days
is: What should I read to learn about statistical natural lan-
guage processing? 1 have been asked this question over and
over, and each time I have given basically the same reply: there
is no text that addresses this topic directly, and the best one
can do is find a good probability-theory textbook and a good
information-theory textbook, and supplement those texts with
an assortment of conference papers and journal articles.

The overriding concern should be to learn (and teach) the ma-
thematical underpinnings of the statistical techniques used in
this field. The field of statistical NLP is very young, and the
foundations are still being laid. Deep knowledge of the basic
machinery is far more valuable than the details of the most
recent unproven ideas.

So let’s get down to it!
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Preface

This compendium is the result of the authors’ attempts at teaching courses
on statistical approaches in Computational Linguistics and Natural Lan-
guage Processing, and it is continuously evolving and undergoing revision.
Although we have already put considerable effort into writing, correcting
and updating this compendium, there are numerous errors and omissions in
it that we hope to deal with in the nearest future. The most recent release
of this compendium, in the form of a uuencoded gzipped PostScript file,
stat_cl.ps.gz.uu, or as an ordinary PostScript file, stat_cl.ps, can be
retrieved from one of the authors” WWW homepage at

http://www.coli.uni-sb.de/{~christer,~krenn}

The ambition is to cover most statistical, stochastic and probabilistic
approaches in the field. As will be obvious by inspecting the table of con-
tents, this is by no means yet the case.

The first three chapters have a distinct text-book character: Chapter 1
provides the necessary prerequisites in Probability Theory and Statistics,
Chapter 2 describes some statistical models that are much in use in the field,
and Chapter 3 constitutes an introduction to Corpus Linguistics. Chap-
ters 4 and 5 discuss how statistical models and techniques are applied to
various task in Computational Linguistics and Natural Language Proces-
sing, relating the material presented in the previous chapters to relevant
scientific articles.

Feel free to use this compendium, but please do acknowledge the source.
Also, any comments or suggestions to improvements are more than wel-
come, and are most likely to enhance future versions of the compendium.
We are already greatly indebted for this to Rens Bod, Bob Carpenter, John
Carroll, Ted Dunning, Jussi Karlgren, Kimmo Koskenniemi, David Mager-
man, David Milward, Joakim Nivre, Khalil Sima’an, Atro Voutilainen and
numerous students at the University of the Saarland, Uppsala University,
the University Helsinki and to course participants at the ESSLLI-97 sum-
mer school in Aix-en-Provence. Special credit is due to Thorsten Brants,
who wrote the first version of the section on Hidden Markov Models, and
to our online mathematician Ake H. Samuelsson. Parts of the compendium
are used in a web-based introductory course on statistical natural language
processing which is set up by Joakim Nivre at Goteborg University. It can
be accessed via http://www.ling.gu.se/~nivre/kurser/wuwstat/.

Saarbrucken New York

December 1997
Brigitte Krenn Christer Samuelsson
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Chapter 1

Basic Statistics

1.1 The Stability of the Relative Frequency

Although an elegant theory in its own right, the main reason that statistics
has grown as popular as it has is something that is known as “The stability
of the relative frequency”. This is the empirical observation that there is
some structure also in random processes. If we for example flip a coin a
large number of times, we will note that in approximately half the cases
the outcome is “heads” and in approximately half the cases it is “tails”. If
we flip a coin a small number of times, say only once, twice or three times,
this is not consistently the case.

The proportion of times a certain outcome occurs is called the relative
frequency of the outcome. If n, is the number of times the outcome u occurs

in n trials, then — is the relative frequency of u. The relative frequency

is often denoted f:

Empirically, there seems to be some number which the relative frequency
stabilizes around after a large number of trials. A fundamental assumption
in statistics is that such numbers exist. These numbers are called probabi-
lities.

1.2 Elementary Probability Theory

Introductory presentations of statistics often disguise probability theory in
set theory, and this is no exception.

1.2.1 Sample Space

The sample space is a set of elementary outcomes. An event is a subset of
the sample space. Sample spaces are often denoted 2, and events are often
called A, B, C, etc. Let’s get this grounded with an example:

Example: For a normal die!, the six elementary outcomes are
One, Two, Three, Four, Five and Six, and thus the sample space
Q is the set {One, Two, Three, Four, Five, Six}. The events are
various subsets of this set, e.g., “the outcome is One”, {One};
“the outcome is less than four”, {One, Two, Three}; the out-
come is odd, {One, Three, Five}; etc. In fact, there are 26 = 64

14Die” is the singular form of “dice”, a sort of mechanical random generators used in
games like Craps, Monopoly and Fia-med-knuff.
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different subsets of Q| i.e., there are 64 distinct events in Q,
including the empty set ) and € itself, see Section 1.2.7.

Statisticians are a kind of mathematicians, and like to distinguish between
for example the outcome One, which is a basic element, and the event
{One}, which is a set consisting of one element. We will try to keep this
up for a while.

1.2.2 Probability Measures

A probability measure P is a function from events in the sample space (,
i.e., from the set of subsets of Q, ? to the set of real numbers in [0, 1] that
has the following properties:

1) 0 < P(A) <1 foreachevent AC Q
2) P(Q) =1
3) AnB =0 = P(AUB) = P(4)+ P(B)
Intuitively, the total mass of 1 is distributed throughout the set Q by the
function P. This will assign some particular mass to each subset A of Q.

This mass is the probability of event A, denoted P(4). AN B = () means
that A and B are disjoint, i.e., that they have no common element.

Example: For a fair (unbiased) die, where as we recall the
sample space is the set {One, Two, Three, Four, Five, Six}, the
mass 1 is evenly and justly divided among the six different sin-

gleton sets. Thus P({One}) = P({Two}) = P({Three}) =
P({Four}) = P({Five}) = P({Six}) = 6 If A is the event of

the outcome being divisible by two, i.e., the subset {Two, Four, Six},
and if B is the event of the outcome being divisible by three,

1 1
i.e., the subset {Three, Six}, then P(A4) = 3 and P(B) = 3"
A loaded die, used by cheaters, would not have the probabi-
lity mass as evenly distributed, and could for example assign

1
P({Six}) a substantially larger value than 6

Some immediate corollaries that are worth remembering fall out from
the definition of a probability measure:

a) P(B\ A) = P(B)— P(ANB)
ACB = P(A) < P(B)

P(A) = 1— P(4)

P(®) =0

P(AUB) = P(A)+ P(B)—- P(ANB)

>
— e e

o

d

€

~—

B\ A denotes the difference set B minus 4, i.e., the set of elements in B
that are not members of A. A denotes the complement of A, i.e., Q\ A.

Proofs:

a) B = (B\A)U(ANB) ; (B\A)N(ANB) = § =
P(B) = P((B\A)U(ANB)) = P(B\ A)+ P(AN B)

2This is called the power set of  and is denoted 2.
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b) ACB = ANB = A
0 < P(B\A) = P(B)—P(ANB) = P(B)— P(A)
c) A Q\A; ANQ = A4 =
P(A) = P(Q\A) = P(Q)— P(ANQ) = 1— P(A)
d A= AUb; And =0 =
P(A) = P(AUD) = P(A)+ P(®)
e) AUB = AU(B\A4); AnN(B\4) =0 =
P(AUB) = P(AU(B\ A)) = P(A)+ P(B\ 4) =
= P(A)+ P(B)— P(ANB)

|

O

Note how a) follows from 3) and how a) is used to prove b), ¢) and e).
However, d) follows more easily from 3) directly.

1.2.3 Independence

The probability of two events A and B both occurring is the probability of
the intersection of the sets A and B, P(AN B).
Two events A and B are said to be independent iff3

P(ANB) = P(A)- P(B) (1.1)

Intuitively, this means that the probability of A and B occurring simulta-
neously can be established directly from the individual probabilities of A
and B.

Example: To continue the example of the fair die, with the
events A of the outcome being divisible by two and B of the
outcome being divisible by three, we note that P(A N B) =

P({Six}) = é, and that P(A)- P(B) = % So = é Thus A and

| —

B are independent.

Let C be the event of the outcome being divisible by four and
1

note that P(C) = P({Four}) = 6 Intuitively, the property

of being divisible by four is related to the property of being

divisible by two, and if we calculate on the one hand P(ANC) =
1 1

1
P({Four}) = 5 and on the other hand P(A) - P(C) = 36>
1
Tg e see that A and C' are not independent.
1.2.4 Conditional Probabilities

P(A | B) is a so-called conditional probability, namely the probability of
event A given that event B has occurred, and is defined as

P(AN B)

PAIB) = =5

(1.2)

This is the updated probability of A once we have learned that B has
occurred. P(A) is often called the prior probability of A since we have no

3 “Iff” means if and only if.
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prior information, while P(A | B) is called the posterior probability of A
(knowing B), since it is defined posterior to that, that event B occurred.

Intuitively, after the event B has occurred, an event A is replaced by the
event A N B, and the sample space Q is replaced by the event B, and the
probabilities are renormalized accordingly, which means dividing by P(B).

The probability of an event A can change drastically when one learns
that some other event has occurred. The following example is rather ex-
treme, but illustrates this point:

P(A|4) = 1
PA|A) = 0

Now, if A and B are independent, then P(AN B) = P(A) - P(B) and
P(ANB P(A)-P(B
thus P(A | B) = (A0 5) = (4) - P(B) = P(A). This means that no
P(B) P(B)

new information is gained about A by knowing that B has occurred.

Example: Again continuing the example of the fair die, with
the events A of the outcome being divisible by two, B of the
outcome being divisible by three, and C of the outcome being di-
P(ANB g 1
visible by four, we note that P(A | B) = w =6 ___
P(B) L
3
P(A), as should be, considering that A and B are independent.
P(ANC) P({Four})

On the other hand, P(A | C) = PO = P({Four}) =1+

1
P(A) = 7 since A and C are not independent.

1.2.5 Bayesian Inversion

Either by returning to the definition of conditional probability, Eq. (1.2),
or by noting that if both A and B are to occur, then first B must occur,
and then A must occur, or the other way around, we can establish that

P(B)-P(A|B) = P(AnB) = P(A)-P(B|A)
This directly gives us the Bayesian inversion formula®*:

P(A)-P(B| A)

P(A|B) = )

(1.3)
This formula relates the probability of an event A conditional on another
event B, i.e. P(A| B), with the probability of event B conditional on event
A, P(B | A), and is useful if the former quantity is not easily determined,
while the latter is.

Example: We turn again to the example of the fair die, with
the events A of the outcome being divisible by two, B of the
outcome being divisible by three, and C' of the outcome being
divisible by four. If we wish to calculate P(C | A), i.e., the
probability that the outcome is divisible by four given that it
is divisible by two, we observe that the probability P(A | C)

4The formula is of almost religious importance to so-called Bayesianists, see [Pearl
1988], pp. 29-41.
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is 1, since divisibility by four implies divisibility by two, and

1
recalling that P(A4) = ) and that P(C) = g’ We can establish

1
PC)-P(AIC) ]
that P A)= = = -.
2
1.2.6 Partitions
Assume that we have a collection {4; : ¢ = 1,..., N} of events (sets) such
that
N
Q = |JA4
i=1
AiNnA4; = 0 for i £ j.

The first equality means that the sets A; cover the sample space £ and
the second equality states that all events A; are disjoint. This situation
is illustrated in Figure 1.1. We say that {A4; : i = 1,..., N} constitutes a

(J

Figure 1.1: The sets A; through As constitute a partition of €.

partition of  and we can establish the following formula:

P(B) = P(BNQ) = P(BN|JA4;) = (1.4)
= P(UBnA) = Y P(BnA) =Y P(B|A) PA)

This can be seen as follows: Since the sample space Q2 must contain the event
B, B equals BN§). Thus the probability P(B) is the same as the probability

P(BNK). As the sample space consists of the union of the disjoint events
N N
A;, we have Q = U A;, and we can thus write P(B N U A;) instead of
i=1 i=1
N N
P(BN ). Now, BN U A; is equivalent to U BN A;, and we can thus

i=1 i=1
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N N
rewrite P(BN U A;) as P(U BN A;). Furthermore, the probability of the
i=1 i=1
union of disjoint events equals the sum of the probability of the individual
N

N
events. Thus P(U BnA;) = ZP(B N A;). The last equality of the
i=1 i=1
equation follows from the definition of conditional probabilities, Eq. (1.2).
Equation 1.4 is very useful when there is a natural partition {A4;} of
Q, and it is easy to calculate the probabilities P(4;) and the conditional
probabilities P(B | 4;).

Example: In the example of the fair die, one way one could de-
termine the probability of event B, that the outcome is divisible
by three, is to use the natural partition A; = {One},... Ag =
1
{Six} where P(4;) = 6 for all i, and where P(B | A;) is 1 if ¢
1

1
is divisible by 3 and 0 if it is not. Thus P(B) =0 - 6 +0- 6 +
1 1

1 1 1
1.2 Lz 2412 =2,
6+0 6—1_0 6+ 6 3

1.2.7 Combinatorics

And now for something completely different: This section contains some
results from elementary combinatorics that will be needed later, e.g., in
Section 1.5.1.

The following table summarizes the number of different ways k elements
can be selected from n elements. This is in fact an instance the much
dreaded “urn and balls” scenario, which has plagued statistics as long as
anyone can remember. This particular incarnation can be viewed as the
even more feared “Lotto” scenario where the urn contains n balls numbered
from 1 to n, and where we will at random draw a ball k& times. In doing
this, we may or may not replace selected elements, i.e., we may or may not
put the drawn ball back into the urn, and we may or may not be interested
in the order in which they are selected. This gives us four different cases:

Without replacement ~ With replacement
Ordered (n)x nk
n n+k—1
Unordered ( k ) ( k )
Here
nl = n-(n-1)-...-1
n!
k factors
k ———
n® = m-...-n

(Z) - (7/?!k - (n—nl!c)!k!

n!is read out “n factorial”. By definition 0! = 1. In particular, the number

of permutations of n elements is (n), = nl. ( Z ) is read out “n over k7.
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We devote the rest of the section to proofs of these formulas:
Ordered, without replacement:
We wish to select k& items from n items, where selected items are not re-
placed, and where we are interested in the order in which they are selected.
First we have n possible choices, then we have n — 1 choices left, since
we have removed one item, etc., down to the kth choice, where we have
n—(k—1)=n—k+1 alternatives. Thusn-(n—1)-...-(n—k+1) = (n)i
possibilities in total. O
Ordered with replacement:
We wish to select k items from n items, where selected items are replaced,
and where we are interested in the order in which they are selected. First
we have n possible choices, then we have again n possible choices, since we
put back the selected item, etc., down to the kth choice, where we still have
n alternatives. Thus n® possibilities in total. O
Unordered without replacement:
We wish to select k items from n items, where selected items are not re-
placed, and where we are not interested in the order in which they are
selected. We will first select k items paying attention to the order. Then
there are (n); possibilities. For each set of k different items, there will
be k! permutations of them. Thus among these (n); sequences of k items
there are for each such set k! sequences that should be considered to be the
same, since we are not interested in the order in which items are selected.

We will then factor out this by dividing (n); by k!. In short:

. ordered without replacement
Funordered without replacement = # _ P =
Fpermutations

% = ( Z ) Thus ( Z ) possibilities in total. O
Unordered with replacement:
We wish to select k items from n items, where selected items are replaced,
and where we are not interested in the order in which they are selected. To
this end, we make a list of the n items, and make a tick beside “i” each
time we select item ¢,2 = 1,...,n:

3

k|1 ... i j .. o«
n | T

We can represent this by a sequence of n zeros and k ones, where the
number of ones immediately preceding the ith zero indicates the number of
times item ¢ is selected:

n
———
0...00...0

10...11010...10
n+k

Thus, this reduces to selecting k elements (ones) from n+k—1 elements wit-
hout replacement, and where the order is not significant. (The “minus one”

is since the last digit cannot be a one.) Thus < " +]]: -1 ) possibilities
in total. O
The last two proofs used the well-known tactics of mathematicians of

reducing to Case One.

Story time: A mathematician is faced with the following scena-
rio: A bucket, a well and a house on fire. He immediately finds
the correct solution of using the bucket to fetch water from the
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well and extinguish the fire. Next, the mathematician is faced
with the scenario of a bucket, a well and a house that is not on
fire. He rapidly sets fire to the house and reduces the problem
to Case One.

1.3 Stochastic Variables

A stochastic, or random, variable ¢ is a function from a sample space Q
to R, the set of real numbers. Thus, if u € Q, then {(u) € R. Figure 1.2
illustrates this. It may seem strange to call a function a variable, but this
convention will die hard, if ever. There are two dominant conventions for
denoting stochastic variables — one using Greek letters like &, 7,(, ... and
the other using Roman capital letters XY, 7 ... We will use the former
convention.

U R

Figure 1.2: A random variable is a function from 2 to R.

Example: The running example of the fair die does not illu-
strate this very well, since there is a mapping form the sam-
ple space © = {One, Two, Three, Four, Five, Six} to the subset
{1,2,3,4,5,6} of R that is so obvious, that it seems artificial
to distinguish between the two. However, let us define the
stochastic variable ¢ as the function from Q to R such that

¢(One) = 1,{(Two) = 2,...,¢(Six) = 6.

1.3.1 Distribution Function

Let A be a subset of R, and consider the inverse image of A under &, i.e.,
ETHA) ={u:€(u) € A} C Q. We will let P(€ € A) denote the probability
of this set, i.e., P(€71(A)) = P({u: é(u) € A}) = P(€ € A). See Figure 1.3.

If A is the interval (—oo, 2],% then the real-valued function F' defined by

F(z) = PHu:é(u)<z}) = P(<z) forallzeR

is called the distribution function of the random variable £&. Sometimes F' is
denoted F¢ to indicate that it is the distribution function of the particular
random variable &.

5(a,b) denotes an open interval, while [a, b] denotes a closed interval, i.e., in the former
case a and b do not belong to the interval, while in the latter case they do.
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E'l(A) ~ V~—_— R

A

Figure 1.3: P(¢ € A) is defined through P(¢71(A4)) = P({u: £(u) € A}).

Example: In the reappearing example of the fair die, the dis-
tribution function F; is defined by

Il
o

for =z <1,

for 1<z<2,

for 2<z <3,

for 3 <z <4,

for 4 <z <5,

WIN N — | —

for 5 <z <6,

=1 for 6<uz.

SOy DT D DWW DN D= DO

The graph of this function is depicted in Figure 1.4.

Some rather useful corollaries that are worth remembering include:

a) Pl>x) = 1-F(x)

b Pla<E<b) = F(b)— Fla)

¢) F is a nondecreasing function, i.e. if 1 < a2, then F(x1) < F(z2).
d) xEmoo F(z) = 0

e) lim F(z) = 1

r— 00

The proofs of a—c) are left as an exercise.

1.3.2 Discrete and Continuous Stochastic Variables

The image of the sample space Q in R under the random variable ¢, i.e.,
the range of &, is called the sample space of the stochastic variable £ and is
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F(X)

56 | — 0
46 | —0

36 | —0

26 —0

6 | —0

o~
o T T T T T
1

2 3 4 5 6

Figure 1.4: Fair die: Graph of the distribution function.

denoted €. In short Qg = £(Q).
Stochastic variables come in several varieties. Two common types are
discrete and continuous stochastic variables:

e A random variable is discrete iff () is finite or countable.
e A random variable is continuous iff

1. F'is continuous, and
2. F is differentiable with a continuous derivative except in at most

a finite number of points.

The attentive reader may have noticed that Calculus is entering into this
presentation through the back door. This is really necessary for a good
understanding of the subject, in particular of continuous random variables,
and we refer those interested in this to some introductory book on calculus
until we have had time to include an appendix on the topic.

Example: In the persistent example of the fair die, Q; =
{1,2,3,4,5,6}, and ( is thus a discrete random variable.

1.3.3 Frequency Function

Another convenient way of characterizing a random variable is by its fre-
quency function f:

e For a discrete random variable, f(z) = P(£ = z).

e For a continuous random variable, f(z) = F'(z) = %F(x). 6

CF'(2) = LF(2) = limy_o Fleth) - Fz)

h
point z. Intuitively, this is the slope of the curve at point z when F(z) is plotted against
z.

is the derivative of the function F' at
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Sometimes f is denoted f¢ to indicate that it is the frequency function
of the particular random variable £. The frequency function of a discrete
stochastic variable is often referred to as the probability function, and the
frequency function of a continuous stochastic variable is often referred to
as the probability density function.

Example: Continuing the perannial example of the fair die, we
find that the frequency function f¢ is

Fe1) = Fo2) = 10(3) = fe(4) = fo(5) = Fo(6) = ¢

This is an example of a uniform distribution, i.e., f(z) has the
same value for all elements in . Note that a uniform distribu-
tion can only be assigned to a finite or bounded sample space.
Figure 1.5 shows the graphical representation of the frequency
function f.

f(x)

6 |

1 2 3 4 5 6

Figure 1.5: Fair die: Graph of the frequency function

The probabilities of events can be calculated from the frequency function:

e For a discrete random variable

PE€eA) = fe(a)

TEA

and in particular

P<a) = Fe(x) = Y fela

10, <T

e For a continuous random variable,

reed) = [ o) i
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and in particular

Pese) = K@ = [ & a

Since all probabilities must sum to one, we have:

e For a discrete random variable

P(Qe) = D felx) = 1

.’L‘Eﬂg

e For a continuous random variable
PO = [ K@) i =1

1.3.4 Expectation Value

The ezpectation value or statistical mean of a stochastic variable £, denoted

E[¢], is defined as follows:

e For a discrete random variable

E] = Y - f(z) = sz"f(‘l’z’)

:L‘EQ&

e For a continuous random variable
E[¢] = / z- f(z) de

Expectation values are often denoted u. The expectation value is the ave-
rage value of the outcome of the random variable weighted by probability,
indicating the center of gravity of ¢.

Example: Continuing the notorious example of the fair die,

b1 6-7
E[C] = Zi-g = 5
i=1

Note that this is not a possible value for (.

| =
(3]

A random variable can be a function of another random variable, i.e.,
n = ¢g(&). The expectation value of the random variable 5 can be calculated
from the frequency function f; of &:

e For a discrete random variable

E[] = E[g&)] = > g(z) fe(z) = Zg(fi)'fs(l’i)

.’L‘Eﬂg

e For a continuous random variable,
B = B©) = [ o) fel) d
As we shall soon see, this trick can come in quite handy.

Example: Continuing the long-lasting example of the fair die,
if = (2, then

B = BKY = 37 =

=1
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56 mean

46 | — 0
36 | 40

26 | —0 1

16 | f(x)
N I I
2

T 1 / 1
1 372 4 5 6

)

Figure 1.6: Fair die: Expectation value (mean)

1.3.5 Variance

The wvariance of a stochastic variable ¢, denoted Var[¢], is defined as the
expectation value of (¢ — p)?, where p = E[¢], i.e., Var[¢] = E[(€ — u)?].

e For a discrete random variable, this means that

Varlg] = > (z—p)’ - f(2)

.’L‘Eﬂg

e For a continuous random variable, the corresponding expression is

Var[¢] = /OO (x — p)Q f(z) dx

— 00

Variances are often denoted o?. The variance is a measure of how spread
out the probability mass is from the center of gravity u. o itself is referred
to as the standard deviation.

Example: Continuing the inextinguishable example of the fair

die,

5 7, 1 35
Var[(] = ) (i 5)2 5 S T
i=1

From the point of view of elementary Mechanics, the variance is simply
the quadratic moment about the center of gravity, and Steiner’s Theorem
from Mechanics can sometimes be useful for calculating Var[¢]:

(E[¢])? or (1.5)
12

Varlg] = B[¢’]
o’ = E[¢]

F(x)
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Example: Continuing the eternal example of the fair die,

91 49 _ 182147 _ 35

Var[(] = E[¢*] - (E[(])? = 5 3 - 12 T 12

which is the same result as when using the definition directly.

1.3.6 Moments and Moment-Generating Functions

In general, the expectation value of £", i.e., E[¢"], is known as the rith

moment of £, denoted p,. This means that E[¢] = p¢ = g1 and that the

expectation value of the square of ¢, which just figured in Steiner’s Theorem,

is the second moment of ¢, i.e., E[¢%] = ps. If we instead calculate the

expectation value of E[(§ — u)"], we have the rth central moment of £ about

1. We see that the variance is the second central moment of ¢ about p.
The moment-generating function m(t) of ¢ is defined as

m(t) = E[%] = Y e fe()

xEﬂ&

for a discrete random variable and for a continuous random variable as

o0

m(t) = El¥] = / " fe(z) dx

— 00
This sum or integral doesn’t necessarily converge for any value of ¢, but if
it does so for all ¢ around zero, i.e., in —h <t < h for some h > 0, we are
in business. We then have

dr o0
ﬁm(t) = / z"e" fe(z) dr

— 00

and if we let ¢ tend to zero, we find that

dr e

G0 = [ @) d o= B = a
— 00

So in this sense, m(t) generates all moments of £. In view of the series ex-

pansion of the function e discussed in Appendix C.3, this is not altogether

too surprising.

1.4 Two-dimensional Stochastic Variables

Let ¢ and 1 be two random variables defined on the same sample space
Q. Then (§,n) is a two-dimensional random variable from Q to Q¢ ;) =
{(¢(u),n(u)) : u € Q} C R?% Here, R? = R x R is the Cartesian product
of the set of real numbers R with itself. This is illustrated in Figure 1.7.
We can pull off the same sort of stunts with two-dimensional stochastic
variables as with one-dimensional stochastic variables.

1.4.1 Distribution Function

The distribution function of the two-dimensional random variable (¢, ) is
defined as follows:

F(z,y) = P<z,n<y) = PHu:&u) <z n(u) <y} for all (z,y) € R?

This is called the joint, or bivariate, distribution of ¢ and n and P(¢ €
A,n € B) is called the joint probability of ¢ € A and n € B.



1.4. TWO-DIMENSIONAL STOCHASTIC VARIABLES 15

y R2

n(w? [HORIO)

_— £ (U

Figure 1.7: A two-dimensional random variable is a function from Q to R2.

1.4.2 Frequency Function

There are discrete and continuous versions of two-dimensional random va-
riables, and they all have frequency functions:

¢ A two-dimensional random variable (¢, 7) is discrete iff Q¢ ) is finite
or countable. The frequency function f of (£,7) is then defined by

fle,y) = PE=2,n=y) = P((&n) = (2,y)) for (z,y) € R?

e A two-dimensional random variable is continuous iff the distribution
function F'(z,y) can be written as

F(z,y) = /_OO /_yoo flu,v) dv du

for some non-negative integrable function f. The function f is then
called the frequency function of (£, 7).

Thus, for all two-dimensional stochastic variables we have f(z,y) > 0.
For a continuous variable we also have”

2
flz,y) = afayF(;r,y) and
/ / flu,v) dvdu = 1.
Furthermore, for A C Q¢ )
P((¢,neA) = Z f(z,y) if (&,7n) is discrete, and

(z,y)eA

/ f(z,y) dz dy if (&,n) is continuous.
A

P((&m) € 4)

7The curly derivative is the partial derivative w.r.t. x.

9
Az
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Intuitively, a two-dimensional stochastic variable defines a mass distribution
in the real plane. For a discrete variable, f(x,y) is the mass at point (z, y);
for a continuous variable, f(z,y) is the density at point (z,y).

We can recover the frequency functions of either of the individual va-
riables by summing, or integrating, over the other:
If (&, 7) is discrete, we have

fe@) = > flwy) and  fy(y) = Y f(=9)

yEQ, TEQLe

and if (&, 7n) is continuous, we have

fe@) = [ s a ad £ = [ few) @
In this context, f¢ is often referred to as the marginal distribution of £, and
similarly for f,.
1.4.3 Independence

Two stochastic variables ¢ and 7, defined on the same sample space, are
said to be independent iff

PeAneB) = PleA) P(neB) (1.6)
for all subsets A and B of R.

Not very surprisingly, & and 7 being independent is equivalent to
o Fie(z,y) = Fe(x) - Fy(y) for all (z,y) € R?; or
o Jiem(@ ) = fe(z) - foly) for all (z,y) € R,

1.4.4 Functions of Stochastic Variables

Finally, we look at functions of two random variables, ¢(u) = g(&(u), n(u)).
For the expectation value of g(&,n) we have

Elg(&,n)] = Z g(z,y) ~f(§yn)(r, y) if (€, ) is discrete
(2,9)€Q e,
Elg(&,n)] = / / g(z,y) ~f(57,7)(;l‘, y) dy dz if (£, n) is continuous.
Let &, and &, ...,&, be random variables defined on the same sample

space 2, and let @ be a real number. The following formulas are worth
memorizing:

) Ela-¢] = a-E[]

) E[€+n] = E[§]+ E[n]

) Elei+.. +&] = EG]+... 4 Eg)]

d) Varla-¢] = a?- Var[¢]

o> Q

o

If we in addition to this require that &,n and &;,...,&, are independent,
we get the following useful formulas:

a) E[¢-n] = E[]-E[y]

b) E[&1-...-&] = E[&] ... E[&)]
¢) Var[¢+n] = Var[¢]+ Var[y]
d) Var[ér +...4+&] = Varléi]+ ...+ Var[é,]
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We will later have reason to pay attention to sums of stochastic varia-
bles. The frequency function fi¢4,)(z) of the sum £+ can be derived from
the joint frequency function f ,)(x,y). In the continuous case we have

Fregpy(x) = Pl+n<r) = /+ . feem(u,v) du dv =

/ / f(gyn)(u, v) dv du

Now

d
feam(@) = F(£+77) = / / Jie(u,v) dv du =

:/_ / Fem(w,v) dv du / Feon(u, & — ) du

In particular, if £ and 7 are independent, we have fi¢ ,)(x,y) = fe(x)fy(y)
and thus

Jewnm (@ / fe(u)fy(z —u) du

Example: Let & : i = 1,2,... be independent random varia-
bles with frequency function Ae~**. (This particular frequency
function will be discussed in Section 1.5.3.) Then

f(51+§2 / fE1 sz a:—u) =

/ e~ M e~ AME=u) gy :/ A2 dy =
0 0

T
= )\Ze_M/ du = Nlzge™?*®
0

If we have the sum of three variables, we can establish that

fereren@ = [ fereo@e(e—u) du =

/ Mue M Ne™MEU) gy = )\36_)\33/ udu =
0 0

_ /\3%6—)\@'
In—l
In general we find that fie 4. ye,)(7) = )\”We_)‘x
n— 1)!

So what is the expectation value of the mazimum of n independent
observations of the same random variable £7

Fraxer, . e)(2) = Plmax(&, ... &) <z) = _HP(&SIE) = (Fe(2)"

Derivation immediately yields:

fmax(f1,,,4,5n)("r) = Frl;lax(gl,,,,,fn)(x) = n(Fg(I))n_le(l)
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Thus we have

Bl &) = [ 2onierco(@ds = [ en(Pe@)" e(a)da
Q Q

If for example ¢ has a uniform distribution on the interval (a,b), i.e., if

& ~Ul(a,b), see Section 1.5.3, then

b —a .
Blmax(ér, &) = [ en(Fe@) fewyds = [ e

b b
r—a r—a a
ndr n—1 dr =
/an(b—a) 1—1—/@ n(b—a) b—a "
nb—a),z—a p  MA T — G, n

. [(m)nﬂ]a‘F (=) = (b—a)+a

n

1.4.5 Higher Dimensions

All this can easily be generalized to several variables.

1.5 Selected Probability Distributions

Some particular types of stochastic variables pop up quite often, and their
distributions are given special names. In the following, we will discuss in
detail some probability distributions, namely the Binomial and Normal (or
Gaussian) distributions, and present more briefly a number of other ones.

1.5.1 Binomial Distribution

A common situation is when we repeat an experiment a number of times
and see how many times some particular outcome occurs. For example,
assume that we flip a coin a number of times, and count the number of
times “heads” comes up.

Let Q = {u, v} be a basic sample space (where in our example say u is
“heads”) and let £ be the number of times u occurs in n independent trials.
The stochastic variable £ is then defined on the sample space

n factors
{u,v} x {u,v} x ... x {u,v}

and an outcome in this sample space can be described as a string of length
n over the alphabet {u, v}, e.g., if n = 5, uvvuu. This is mapped to a real
number, in this case 3, since this string contains three us. Thus, the value
of ¢ is a natural number between 0 and n, ie. Q ={0,1,...,n}, and £ is
a discrete random variable, since this set is finite.

In general, let p be the probability of an event u. If ¢ is the number of
times u occurs in n independent trials, then & has a Binomial distribution
with parameters n and p. This is often denoted & ~ bin{n,p}. We will
now try to establish the frequency function of a stochastic variable with a
Binomial distribution. Assume that event u has probability p and event v
has probability ¢ = 1 — p. Then for example the sequence uvvuu has pro-
bability pggpp = p3¢%. In fact, any sequence with three us and two vs has
probability p3¢%. Now, there are ten different such strings, i.e., there are
ten outcomes in {u, v} x{u, v} x{u, v} x{u,v}x{u, v} that map to 3, namely
UUUVY, UUDUD, UUVVU, UVUUY, UVUDY, YVVUY, DVUUUY, vuuvy, vuvuy and vvuuy.
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Each of these outcomes has probability p3¢2. Thus the probability of get-

. . . 1 1 10
ting exactly three “heads” in five flips is 10 - (5)3 . (5)2 =35= 0.3125.
Similarly, we can compute the probability of getting exactly zero, one,
two, four or five heads in five independent trials of the coin-flipping expe-
riment. Figure 1.8 shows the resulting probabilities, and Figure 1.9 gives a

graphical representation of the distribution.

ko Jo 1 2 3 4 5 |¥
1 5 10 10 5 1

32 32 32 32 32 32
Figure 1.8: The probability of getting 0,1,2,3,4,5 heads in 5 independent
trials.

P =k)

PE=K)

1032 |

532

V32 |

0 1 2 3 4 5

Figure 1.9: The probability distribution when flipping a coin five times.

In general, any string of k us and n — k vs will have probability p*¢?*.
|
Now, there are Z = m distinct such strings, as explained

in detail in Section 1.2.7. Thus, the probability P(( = k) = fe(k) =

< Z )pkqn—k.

In words, the probability P(¢ = k), defining the frequency function
fe(k), is the product of the number of possible ways of selecting & items

, and the probability of each such possibility, p*¢”*.

n
k
This is valid for £ =0, ..., n.

This gives us the frequency function of a binomially distributed variable:

from n items,

n

fe(k) = (k )pk(l—p)”_k, ke {0,1,...,n}, 0<p<1 (1.7)
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This distribution is parameterized by the probability p of the particular
outcome u, and n, the number of trials.
It is easy to establish that if a random variable & ~ bin(n,p), then:

n

PEeQ) = Z(Z)pku—p)”-k -1

k=0

) = Peso = Y = X §)ra-prt
pg = ok (f)ra-et = w
Vil = (k- () r- = ani-p)

The first three equations should come as a surprise to no one. The first
equation simply states that the probability of u happening either zero,
one, two, ... or n times in n trials is one, i.e., that the probability of the
entire sample space is one. The second equation expresses the distribution
function F¢(z) in terms of the frequency function f¢(2). The third equation
states that the average number of times u will happen in n trials is n - p,
where p is the probability of u.

If f,, is the relative frequency of event u, i.e., f, = =, we have:
n

Bl = B =SBl = o =

1 1
Var[f.] = Var[g] = FV&I‘[&’] = n—znp(l—p) =

1.5.2 Normal Distribution

The Normal or Gaussian distribution, named after the German mathe-
matician Carl Friedrich Gauss (1777-1855), famous for figuring on the 10
Mark bank notes together with the distribution function below, is probably
the most important distribution around. This is due to the Central Limit
Theorem presented in Section 1.6. Due to its importance, a number of
other probability distributions have been derived from it, e.g., the x? and
t distributions, see Section 1.5.3.

We will not beat around the bush, but give the hard-core definition
directly: Let £ be a normally distributed random variable with expectation
value p and variance o2, denoted ¢ ~ N(p, o). Then the frequency function

fe(z) is

1 (z—p)?
x) = e 22 | rER
f&( ) U\/ﬂ

Nice figure needed here! ‘

Since
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this is a proper frequency function®, and since the distribution function is

¢ 1 {t—u)2
Fe(z) :/ e” 202 it

the associated random variable is continuous.

See Appendix C.3 for a discussion of the number e, the exponential
(z—p

. . . =)t
function e”, and the natural logarithm function Inz. e™ 222 is simply e”
_ 02
with —u instead of z.
202

Next, we will prove that the parameters u and o2 are indeed the expec-
tation value and the variance of the distribution.

Proofs:

E[f] :/ il e_ a2 dr =

f/oo mf - d”f/ S

af
= 0+ —_— e_tQU\/i dt = —/ e dt =
ﬁoﬂ o N . g

The first equality is obtained by subtracting and adding the
same thing. The first integral is zero, since the integrand g(x) is
antisymmetric around pu, i.e., g(p—y) = —g(p+y), which can be
taken as the midpoint of the integration interval (—oo, 00), and
the contributions cancel out. The second integral is rewritten

by moving out a bunch of constants from the integral and using

d
the variable substitution ¢ = —H. sdt = ¢ O

a\/§ o2

o2
= [—te dt = 0402 = o?
VT \/_

First, the integral is rewritten using the same variable substi-

tution as in the previous proof. Then the integral is partially
integrated, reducing it to an integral with a known value. O

The distribution defined above is parameterized by the expectation va-
lue g and the standard deviation . An important special case is when
# = 0 and ¢ = 1. This is called the Standard Normal distribution. The
frequency function is denoted ¢(z) and the distribution function ®(z). In
this case the random variable is said to be N(0,1). From any normally
distributed random variable £ ~ N(p, o) we can derive another random va-

riable n = il ~ N(0,1), i.e., that has a Standard Normal distribution.
o

We will prove this shortly. We can thus recover the Normal distribution
function for any mean and standard deviation using a table of the Standard
Normal distribution. An example of such a table is given in Section 1.5.4.

If € ~ N(u,0),6 ~ N(u1,01) and €3 ~ N(us2,02) are independent and
a is a real constant, then

o0
2
8/ e~ dt = /7, see Appendix C.3.
—00
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1. aé ~ N(ap,ac),
2. +a~N(p+a,o)and
3. &+ & ~ N(p1 + po, /o + 03).

Proofs: We first note that the expectation values and variances
are what they are claimed to be by the formulas at the end of
Section 1.4. These results will however fall out from the proofs
that the new variables are normally distributed.

1.
Fa() = Plat<z) = P(E<z/a) = Fela)a) =
ofe ) aow? u = at
= /_000_271_6 202 dt:{du _ adt}:
“ 1 _GE=m? du ¢ 1 _(w—ap)?
= € 202 —_— = e 2(ac)? du =
—eo OV 2T a Lo QO 2T
¢ 1 _(e=pl)?
= / ———e 27 du
—oo OV 2T
with p’ = ap and ¢/ = aoc. O
2.
Fepalz) = P(E+a<a) = P(<a—a) = Fele—a) =
B r—a 1 €_£t2_2ﬁ g - u = t+a
B foo O 2T 7 B du = dt B
/:c 1 _£u—§u+a]]2
= e 202 du =
—eo OV 2T
/”” 1 _@=e)?
= € 202 U
—eo OV 2T
with o/ = p+a. O
3.
fatre(z) =
[ 1 _ (w—ny)? 1 _(z—u—pg)?
= / e p— ¥ du = ... =
_oo 01V 2T ooV 2T
1 _lz=p)?
= ———=€ 2072
o'\ 2w
with g/ = py + po and 0’2 = 02 + 02. O
This in turn means that if & ~ N(u;,0;),i=1,...,n are independent and
a;,1=0,...,n are real constants, then

ao-l-zaifi ~ Ny, o)
i=1

poo= a0+ Zaim



1.5. SELECTED PROBABILITY DISTRIBUTIONS 23

In words: Any linear combination of independent normally distributed ran-
dom variables has a Normal distribution. In particular, this proves that if

& ~ N(p,0), then il ~ N(0,1).

o

1.5.3 Other Distributions

This section lists a number of other common distributions. The Uniform
distribution on a finite set and on an interval pop up quite often. The Pois-
son and Exponential distributions are included mainly for reference, and
will only feature occasionally in the following. The y? and ¢ distributions
are used for estimating the parameters of normally distributed stochastic
variables, as described in Section 1.7.

e If the probability mass of a discrete random variable is evenly divided

on a finite set {z; :1=1,..., M}, we have a Uniform distribution on
a finite set; cf. our example of the fair die. This is obviously a discrete
distribution.
1
f(I) = M’ Ie{xl Z_la ,M}

e If the probability mass of a continuous random variable is evenly
spread out on a finite interval (a,b), we have a Uniform distribution
on an interval, denoted ¢ ~ U(a,b). This is obviously a continuous

distribution.
f@) = 7= ced)
Bl = 37
var) = 02

e The Poisson distribution models a stream of impulses where the im-
pulse probability is differentially proportional to the interval length,
but where impulses in disjoint intervals are independent, and where
we have translational invariance. ° ¢ is the number of impulses in an
interval of length ¢ where ¢ is the (differential) proportionality factor,
and A = ct. Thus, this is a discrete distribution.

fe(z) = %e_)‘x zEN, A>0
E[¢] = A
Var[¢] = A

e The Ezponential distribution models first order decay, e.g., radioactive
decay. Here, ¢ is the life span of an atom. Thus, this is a continuous

9insert what translat. invar. means
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distribution. Incidentally, the time between two impulses in a Poisson
process is exponentially distributed.

fe(x) = Xe™™ zeRY, A>0
1

ElE] = X

Var[¢] = )\iz

This distribution, parameterized by A, is denoted & ~ exp(}).

The discrete counterpart of the Exponential distribution is the Geo-
metric or Pascal distribution over N7T:

pe(n) = p(1—p)" ' neNt 0<p<l
1
E[g] = ;
1
Var[¢] = P

This distribution is parameterized by p, the probability of ¢ taking
the value 1. Since this is a probability, we require 0 < p < 1.

,

Let & ~ N(0,1),:=1,...,r be independent. Then n = Eé’f has a
i=1

x? distribution, read out “chi-square distribution”, with r degrees of

freedom, denoted 1 ~ x%(r). This is a continuous distribution.

B = e s
P

Efg] = r

Var[n] = 2r

where T'(z) = / t*~le=t dt, x € RY. Forget about the frequency
0

function and just remember that a y2-distributed variable with r
degrees of freedom has the same distribution as the sum of the squares
of r independent variables with a Standard Normal distribution.

Let ¢ ~ N(0,1) and n ~ x?(r) be independent. Then ¢ = has

€
vn/r
a t distribution with r degrees of freedom, denoted ¢ ~ t(r). This is
a continuous distribution.

E] = 0 forr>1

Var[(] = ! 5 for r > 2

r—

You don’t want to know the frequency function. For large rs, ( is
approximately ~ N (0, 1).

1.5.4 Distribution Tables

It is cumbersome to use the frequency functions of the above distributions
directly for calculations, so tables are compiled that list the solution to the
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equation F'(z,) = p for a number of interesting probabilities p. z, is called
the p - 100% fractile, which means that p - 100% of the probability mass is
associated with values of z that are less than z,. This is done for a variety
of different distribution functions F'(z), some of which will be listed in a
future appendix.

The following is a short example of a table showing the value of the
distribution function ®(z) of the Standard Normal distribution N (0, 1) for
some positive values of z. For negative values, we can utilize the fact that
o(x) = %@(m) is symmetric around zero, i.e., that ¢(—z) = &(z). This
means that ®(—z) = 1 — ®(z) since

®(—z) = /_xqb(t) dit = 1- _oo 6(1) di =

= 1_/f o(—t) dt = 1—/x o(t) dt = 1 — ()
x z)

' O(x) x (. x O(x)
0.00 0.500 | 1.10 0.864 | 2.10 0.977
0.10 0.540 | 1.20 0.885 | 2.20 0.986

0.90 0.816 | 1.90 0.971 | 2.90 0.9981
1.00 0.841 | 2.00 0.977 | 3.00 0.9987

r  ®(z)
1.282 0.900
1.645 0.950
1.960 0.975

These are often used to create confidence intervals, see Section 1.7.5.

1.6 Some Theoretical Results

In this section we will discuss some important theoretical results, namely
Chebyshev’s Inequality, Bernoulli’s Theorem and the Central Limit Theo-
rem.

We will start with Chebyshev’s Inequality, which states that for any
random variable ¢ with expectation value y and variance o? and any ¢ > 0
we have

2

Plle—ul2t) < %

The probability mass P(|¢ — p| > t) is depicted in Figure 1.10

Proof: Assuming for convenience that ¢ is discrete, we have

= Y e-w i) 2 Y (- f(@)

TEfl; |z —p|>t
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PCIE-1| > 1)

/

\ \
-t VIR

Figure 1.10: The probability mass P(|¢ — u| > ).

> 2 ) fa) = P(lz—pl>1)

|z —p|>t

The first inequality comes from summing a positive function
over a subset of ¢, and the second since (z — w)? > t? on
this subset. The final equality follows from the definition of the
frequency function f(z). O

Equipped with this tool, we will now continue by discussing more for-
mally the stability of the relative frequence presented in the introduc-
tion. Let & ~ bin(n,p) and let f, be § Recalling that E[f,] = p and

n
1—
Var[f.] = u, and using Chebyshev’s Inequality with ¢ = € > 0, we
n
can establish that

p(l —p)

P(lfo—p|>¢) <
(fo=pl2e) < =

We will now use a regular trick in mathematical analysis: Having trapped
some quantity, in our case P(|f, — p| > €), between 0 and something that
approaches 0 when some parameter, in this case n, approaches oo, we can
conclude that the trapped quantity also approaches 0 as the parameter
approaches co. This means that

lim P(|fn—p|>€¢) = Oforalle>0

We can thus establish that the probability of the relative frequence devia-
ting the slightest (i.e., being more than ¢ away) from the probability of the
event tends to zero as the number of trials tends to infinity. This is known
as Bernoulli’s Theorem.

The practical importance of the normal distribution is mainly due to
the Central Limit Theorem, which states that if £1,&5, ... is a sequence of
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independent and identically distributed random variables with expectation
value u and variance o2, then

lim P(Zi:1 §i —np

m TSJJ) = ®(x)

n
This means that &, = %Zfl is approximately ~ N(u,o/y/n) for large
i=1
ns.'0 Or to put it more informally: If you take a very large random sam-
ple from a distribution, then the distribution of the sum is approximately
normal. We will refrain from proving this theorem.

The conditions that &; be independent and identically distributed can
be relaxed somewhat, the important thing is that they are not to strongly
dependent, that each makes some small contribution to the sum, and that
p and o? exist. Physical measurements are often disturbed by small, rea-
sonably independent fluctuations in temperature, humidity, electric fields,
concentrations of various substances, etc., or random shocks, vibrations and
the like, and can therefore in view of the Central Limit Theorem often be
assumed to be normally distributed.

In speech recognition there is a strong evidence from corpora that pho-
netic features are best described acoustically by normal distributions. Thus
phonemes are modeled by multidimensional normal distributions.!!

& can be either discrete or continuous. In the former case, using the
normal distribution to approximate the original one is called a continuum
approzimation. In particular, if & ~ bin(n, p), then £ is approximately ~
N{(np,+/np(l — p)). This is known as the Moivre-Laplace Limit Theorem:

1 7{:_”1) x) = x
Jim P np(l_p)é ) = 2(x)

Since it 1s cumbersome to work out the binomial coefficients < n ) for

k
large values of n and k, this is quite useful. Even more useful is replacing
p with the relative frequency f,, almost everywhere, since

(fn - p)\/ﬁ

fn(l - fn)

is in fact also approximately ~ N (0, 1).

1.7 Estimation

Statistical estimation is usually reduced to the problem of estimating some
parameter  of a probability distribution, where the rest of the distribution
is already known. Also, # is known to belong to some parameter space T

1.7.1 Random Samples

Let &,7 = 1,...,n be independent stochastic variables with the same dis-
tribution as the variable &. Then (1, ...,&,) is said to be a random sample

10¢,. will be discussed in more detail in the following section.
11¢f. [Dalsgaard 1992] for an approach based on neural nets, and [Young 1993] for a
HMM-based approach.
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of £. The set of observations of the outcome of the variables in some trial,
(x1,...,2p), is called a statistical material.

From the random sample, we can create new random variables that are
functions of the random sample, which we will call sample variables. In
particular, the two variables &, and s2 are called the sample mean and
sample variance respectively:

_ 1<

= LY -6

i=1

ER®)

The reason for dividing by n— 1 rather than n in the latter case will become
apparent in Section 1.7.5.
We will here digress slightly to prove the Law of Large Numbers:

lim P(|&, —pu| >¢€) = 0 forall e>0.

Here it is essential that E[¢] = p and Var[¢] = ¢? both exist.

Proof: The proof is very similar to the proof of Bernoulli’s
Theorem. By Chebyshev’s Inequality we have that

- 2
P(|én — | >¢) < 0—2 for all € > 0.
ne

By letting n tend to infinity, we can establish the claim.

To put it in more words: The Law of Large Numbers states that
the sample mean &, of a random sample (é1,...,&,) converges
in probability to the mean p of the distribution from which the
random sample is taken, as n increases. O

This is good news! It tells us that we can estimate p with any accuracy we
wish by simply making enough observations.

1.7.2 Estimators

A sample variable g(&1, ..., &) that is used to estimate some real parameter
v is called an estimator. Here v will in general depend on the unknown
parameter  of the frequency function, and should really be written ().
The value assigned to v by the statistical material is called an estimate.
The distinction between estimators and estimates is rather convenient to
make.

We want the estimator g(¢1,...,&,) to in some way be related to the
parameter v it is supposed to estimate. It is said to be unbiased iff

E[g(gla .. ,gn)] = 7

Also, we desire that the larger the random sample, the better the esti-
mator. Let g, be real-valued functions from R™ to R for n = 1,2,...
The sequences {g(&1,...,&n) 52, of estimators is said to be consistent iff

for each ¢ > 0.
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We have that the sample mean &, is a unbiased estimator of the expec-
tation value p since

Bl = BILY 6] = S Eal = Y=

i=1

and that &, ... &, form a consistent sequence of estimators in view of the
Law of Large Numbers. One can further prove that the sample variance
s2 is an unbiased estimator of the variance o?, and that s? s2 ... is a
consistent sequence of estimators of ¢ if the fourth central moment of ¢
about p exists, i.e., if E[(¢ — p)?*] < co.

If for a sequence of unbiased estimators n, = ¢g(&1, ..., &,) we have that
lim,, ., Var[n,] = 0, then 7, is a consistent sequence of estimators.

Proof: By Chebyshev’s Inequality we have that
1
P(lnn =71 2¢€) < = Var[n]

The claim follows immediately by letting n tend to infinity. O

If, in general, we have two unbiased estimators 7; and 7y, then n; is
said to be more efficient than 7, if Var[n;] < Var[ns].

1.7.3 Maximum-Likelihood Estimators

So how do we find good estimators? One method is to use Mazimum-
Likelihood Estimators, MLEs. This method is based on a simple, but im-
portant idea:

Choose the alternative that mazimizes the probability of the ob-
served outcome.

To this end, we proceed as follows: Let ({1,...,&,) be a random sample
of a stochastic variable & with frequency function fe(z), and let (z1,...,z,)
be the corresponding statistical material. We then define the lkelthood
function L(zy,...,2,,0) as the joint frequency function of &;,...,&,

n

L(Ila"':ajnag) = f(fl,..,ygn)ﬂ(l‘l;~~~7In) = HfG(]:Z)

Since the sample is assumed to be random, the joint frequency function is
simply the product of the individual frequency functions, which in turn are
the same function, since this is a sample. For a discrete variable, this is
the probability of the outcome (21, ..., 2,); for a continuous variable, this
is the probability density in the point (z1,...,2,).

We will simply choose the value 6 that maximizes likelihood function L:

max L(z1,...,2,0)

Seeing that the logarithm function In (see Appendix C.3 for a discussion
of this function) is monotonically increasing on R*, we can equally well
maximize In L:

max InL(zy,...,2,,0) = max Z;lnfg(xi)
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This is convenient as L is a product, which means that In L is a sum.

The most important example of a maximume-likelihood estimator is the
relative frequency f,, of an outcome, which is the maximum-likelihood esti-
mator of the probability p of that outcome.

A regular trick for finding the maximum is to inspect points where
86—9 In L = 0. If we for example happen to know that L is a convex function
of #, this is in fact equivalent to a global maximum for interior points of
the parameter space T in which @ is allowed to vary.

Nice figure needed here! ‘

Example: Let ({1,...,&,) be a random sample of & ~ exp(}),
see Section 1.5.3 for the definition of an exponential distribution,
and let (z1,...,2,) be the corresponding statistical material.
Let 6, the unknown parameter of the exponential distribution,
and 7y the quantity that we wish to estimate, both be A. Then

L(xl, ey Ty, /\) = Hfgv)‘(mi) = H/\e_)\x’ = ,\ne_)‘E:L:1 T
i=1 i=1
and
InL(z1,...,20,A) =nlni — )\Zri
i=1

Thus

n

~3

=1

ihrlL(J:l,...,;73,“)\) =

>| 3

which is 0 iff g = Z x;. Let us introduce

n
_ 1
‘InI—E x;
n-
i=1

1

E'

Since L is a convex function of A, this is a global maximum.
Thus the maximum-likelihood estimator of the A parameter of

the exponential distribution is 1/,.

Then the derivative is zero iff A =

Maximum-likelihood estimators can be used to estimate several para-
meters simultaneously. For example, if we want maximume-likelihood esti-
mators of both yu and o? for a normally distributed variable ¢, we can
construct L(zy,...,&n, 4, o) as usual (using the frequency function for the
normal distribution), take the logarithm, and find the values i and o2 for
which simultaneously % InL(z1,..., 25, p,0) and % InL(z1,..., 20, p,0)
are zero. This turns out to be when

n n

ﬂ:lzajiz‘i‘n and OfQIlZ(l’i_i‘n)Q

n “ n -
i=1 i=1

This corresponds to the estimators

n

36 and Y (6 -6
i=1

i=1
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The first one is simply the sample mean &,, which as we recall is an un-
biased estimator of u. However, recalling that the sample variance s2 is an
unbiased estimator of o2, i.e., that
n
9 1

2= ——3 (& — &)? and E[s] = o

n—14
=1

we have that

n

E[% E(& _én)Z] - E[n ; 1 n i 1 E(& _gn)z] = i IE[S?L] = n—_10'2

This means thatnthe maximum-likelihood estimator for ¢2 in the normal

distribution, 1 Z(& —&,)%, is not quite unbiased.
n i=1
This is an example of the fact that maximum-likelihood estimators are
not necessarily unbiased. If we return to our previous example, we find
that the expectation value of the maximum-likelihood estimator 1/¢, of
the A parameter of the exponential distribution does not equal A. In fact,

it equals n 1)\, so it is also slightly off the mark:
n—

o] o] n—1
- _ n ) _ E n ¥ — Az _
BI/E) = [ D@ = [ InZmet s -
n ~ n—1 z" " —Ax L I : :
= —1)\ A (72)'6 dz = {Partial integration n — 1 times}
n— o n—2)!
n n
= ... = A—e e =
n—1 =™ n—1

In both cases, though, we can construct an unbiased estimator from the
maximum-likelihood estimator by multiplying with a scaling factor. This
is actually quite often the case.

1.7.4 Sufficient Statistic

A sample variable g(&1, ..., &) is said to be a statistic if it does not depend
on any unknown parameter. For example, if & ~ N(u, o), where p is not
known, then the sample mean &, is a statistic, whereas &, — y isn’t, since
the latter depends on the unknown parameter pu.

A statistic g(&1,...,&n) is a sufficient statistic for the unknown para-
meter(s) 0 iff the conditional distribution given g(&1,...,&,) = s does not
depend on #. Intuitively, this means that as soon as we’ve fixed the value
of the sample variable (in this case to s), the distribution of the sample
does no longer depend on € and there is thus no further information to be
extracted about 8 from the sample.

A practically more useful definition of sufficient statistic is that the
frequency function of the random sample, which is identical to the likelihood
function of the previous section, can be written as a product of two functions
hi1 and hs, one that depends only on the statistical material, and one that
depends on 8, but only on the statistical material through the function g
of the sample variable:

n

L(:L‘l,...,mn,ﬁ) = Hfg(]jl) =

i=1

f(f1,...,fn)(r1; sy Ip, 0) = hl(g(l;h ey 'Z'n), 0) : hQ(Ih ey 'rn)
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The entire point is that the equation g(z1,...,%,) = s partitions the
range of the random sample (i.e., Q?) into subsets, one for each value of s,
that can be viewed as equivalent w.r.t. the parameter 6, thus condensing
the statistical material without losing information about #. Thus, we have
revealed the innermost secret of sample variables: They condense data.

For example, if n, is the number of times some outcome u occurs in n
trials, then n, is a sufficient statistic for the purpose of determining the
unknown parameter p, the probability of the outcome. Thus no information
about p is contained in the particular sequence of outcomes of the trials,
only in the number of times u occurred. So whereas the size of the range
of the random sample is 27, the size of the range of the sample variable n,,
is n + 1, which nonetheless contains the same amount of information about
p — a tremendous reduction!

There does not necessarily exist a sufficient statistic, but there is always
a set of jointly sufficient statistics, which is a set of statistics:

Definition: Let (£1,...,€,) be a random sample and let 6 be
the unknown parameter(s). The sample variables g1(&1,...,&,),

< 9r(&1, ..., €n) are said to constitute a set of jointly sufficient
statistics iff they do not depend on any unknown parameters
and the conditional distribution given gx(&1,...,&,) = s, for
k=1,...,r, does not depend on 6.

Why there alwaysis one? Set g5 (&1,...,&n) =& for k = 1,...,n. Although
this won’t condense the data, the random sample itself is trivially jointly
sufficient, since once we’ve specified the outcome, its probability is 1, and
thus does not depend on @.

A set of jointly sufficient statistics is said to be minimal sufficient if no
other set of sufficient statistics condenses the data more.

2

Example: The sample mean ¢, and the sample variance s,

_ 1

constitute a minimal sufficient statistics for the parameters 6 =
(i, o) of the normal distribution. This means that we can’t con-
dense the statistical material more without losing information
about u or o.

1.7.5 Confidence Intervals

We have until now only spoken of point estimates of parameters. With
Chebyshev’s Inequality, where we are in essence estimating the probability
of a random variable taking a value that is “far out”, cf. Figure 1.10, we are
nibbling at the idea of interval estimates. The basic idea with a confidence
interval is that we can give a lower or an upper bound, or both, for the
parameter 7, and we can indicate how confident we are that v is in fact
contained in this interval.

Let 91 = g1(&1,...,&n) and 12 = g2(&1,...,&n) be two sample variables
such that:

Plm<y<m) = p
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We then call (n91,72) a confidence interval with confidence degree p. If
P(n1 > v) = P(y > n2), the interval is said to be symmetric. This means
that we have cut off equally much of the probability mass on the left side
as on the right side.

Yoga time: The parameter v is a (real) number, and associated
with no uncertainty or stochastic behavior. v does not take a
value inside the interval with probability p. It is either inside the
interval or outside. If it is inside, our method for determining
the bounds on it worked. If it isn’t, we goofed. The confidence
degree p only tells us how often we will in average succeed in
establishing a correct interval using this method. That’s all. For
example, if we conduct measurements on cg, the speed of light in
vacuum, and establish that with 99 % percent confidence degree
299,792,457 m/s < ¢g < 299,792,459 m/s, this is our guess at
what cg is. In most contemporary theories of Physics, ¢¢ has
some fixed value, and is not subject to random variation.

In the rest of this section, we will assume that ¢ ~ N(y, o) and construct
confidence intervals for g and o.
Estimating y with known o

n B 1 n
As established in Section 1.5.2 i ~ N(npy, . Thus &, = = i~
s established in Section ,Z{f (np,/no) us & n;€

B i=1
N(u,o/+/n), or fna— 'u\/7_1 ~ N(0,1). Utilizing this fact we have:
Pz, < bn — B/n < z3) = ®(ay) — O(a1)

[oa

Rearranging this gives us
_ o — g
P(fn—l‘z—n < p< fn—l‘l—) = (I)(l‘g)—q)(l‘l)

NG NG
This is usually written

gn—£2% < p < én—:m% (p)

where p = ®(x3) — ®(z1). In particular, if we want a symmetric interval
with confidence degree p, we choose © = 3 = —x; such that ®(z) =

1—=(1=p)/2=(1+p)/2, resulting in
é’n—x% < p < €n+x% (p)

Estimating ¢? with known u

Let vy = L Xn:(fz — u)*. Then o = Zn:(&;'u)z is the sum of n squa-
! n i=1 0-2 i=1 g

res of independent normally distributed random variables with expectation

value 0 and variance 1, ie., — _Zui,w ere uj = T—— ~ (0,1).

According to Section 1.5.3, such a random variable has a x? distribution

22
nv;

o2

with n degrees of freedom, i.e., we have that ~ X2(n), and thus

2
nv
P(z; < 0—2" <x3) = F(x3) — F(x1) = p2 — p1
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where F'(z) is the distribution function of the x? distribution with n degrees
of freedom, and F'(z1) = p1; F'(z2) = pa. This gives the following confidence
interval with p = ps — p1:

2 2
nv;, 9 nv

< n
Io 7 I (p)

Estimating ¢? with unknown y

. . 1
If we do not know u, we instead use the sample variance s? = Z(&’Z —

"oop—1+4
=1

€.)? to construct w = zn:(& —& )2, which can also be written
o? — 0 ’

as the sum of n squares of normally distributed random variables with

2
. . . n—1)s
expectation value 0 and variance 1, i.e., ( )5 = E u?, where u; =

_ o?
@ ~ N(0,1). Unfortunately, these u;s are not independent since, for

example, they sum to zero:

n

S A SRR S TR N S S &
Zulzz_; p :Z;;—Z;;:n;—nFZO

i=1
n f éf n—1
0 h that Y  >—" canb itt w? where w;
ne can however prove tha ; —— can be rewritten as ; w; where w
. : (n—1)sp
are indeed independent and ~ N(0, 1), and we then have that —
o
xi(n—1).
We can thus establish that
n—1)s2
P(;l‘l < %<I2)IF(1‘2)—F(I1)IPQ—]91

where F(z) is the distribution function of the x? distribution with n — 1
degrees of freedom, and F(z1) = p1; F(22) = pa2. This gives the following
confidence interval with p = ps — p1:

n—1)s2 n—1)s2
( ) n < 0_2 < ( ) n (P)
Ei) Ty
Estimating g with unknown o
Of course, it is not generally the case that we know ¢ but not . When

—1)s?
both are unknown, we can instead use the fact that w ~x?2 (n—1)
_ o
§n — 1
o

and that

Vn ~ N(0,1). Now let
S = /2

Then €n—_'u\/ﬁ ~ t(n — 1) and we can establish the analogous result

n

_ Sn - Sn
bn—t— < p < &+t—r (p)

Vn vn

where F' is the t distribution function with n — 1 degrees of freedom, and

F)=1-(1-p/2=>1+p)/2.
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Worked Example: Given the following temperature measu-
rements,
L1 L2 L3 L4 L5 L6
20.1°C 19.7°C 19.9°C 20.2°C 19.8°C 20.0°C

estimate a symmetric confidence interval for the temperature.

We will assume a normal distribution, i.e., & ~ N(u,0) for

i=1,...,6. We introduce the sample variables s and s2:
_ 18
6 = G ;&
1< _
5= 2D (6 —&)
i=1

From this with can construct a new sample variable with a ¢
distribution with five degrees of freedom:

s2/6
Thus, the following is a symmetric confidence interval
5

V6

where ¢ is determined from the ¢-distribution function with 5
degrees of freedom and the desired confidence degree p. Let us
assume that we want p to be 0.95:

(p)

/L:i‘@:l:t

F(t) = 1—(1—p)/2=1/2+p/2=1/2+0.95/2=0.975

From the t-distribution table we find ¢ = 2.571 and from the
data we calculate

6
B 1
T = E;x = 19.95°C
1 6
§2 = 32(@—336)2 = 0.035 (°C)?
=1
§2
Y5 = 0.196 °C < 0.20°C

This yields us

po= 19.95°C £ 020°C  (0.95)

1.7.6 Hypothesis Testing and Significance

Assume that we wish to prove something, e.g. that some gambler is using
a loaded die with a distinct bias towards (or against) the outcome Six.
We then throw the die a large number of times and observe the relative

. . . . 1
frequency of the outcome Six. If this deviates considerably from 5 we

conclude that the die is loaded.
How can we get this more mathematically well-founded? Well, having
just learned a lot about confidence intervals, we will use similar techniques.
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We create an estimator with a known distribution that depends on p, the
probability of Six, in much the same way that we would when constructing
a confidence interval. In this case, we know that nf, ~ bin(n,np) and
that thus P(z1 < nfy, < x3) = F(22) — F(21), where F'(x) is the binomial
distribution function. To simplify the calculations for large values of n, we

(fn - p)\/ﬁ
Vvp(l—p)

P(p— 1.96\/@ < fo<p+ 1.96\/7@) ~ 0.95

As we recall from Section 1.5.4, 1.96 is the 97.5-percent fractile of the
Standard Normal distribution. Since the confidence interval is symmetric,
this means that we cut off 2.5 percent of the probability mass in both ends,
leaving 95 percent.

can instead use that is approximately ~ N(0,1) to establish

that

. - .
Under the assumption that p is in fact 6 this means that

1 073 1 073
P < fa< -+~
(6 \/E<f<6+\/ﬁ

If the observed relative frequence is not in this interval, we argue that the

) =~ 0.95

observed outcome is so unlikely if p were in fact 5 that we can conclude

1
that p is not —. If for example we throw the die 100 times and it shows Six

in 25 of them, the observed relative frequency 0.25 is not contained in this
interval, and we conclude that the die is in fact loaded, and our gambler
has had it.

This is an example of a hypothesis test. The basic line of reasoning to
extract from this is that if the thing we want to prove false were really true,
then the observed data would be very unlikely. More formally, we assume
that a null hypothesis Hy, that we want to prove false, is really true. We
then calculate the probability of as extreme a statistical material as the one
observed, given that Hy is indeed true. Now, if this probability is less then
some predefined value p, we can discard the null hypothesis at significance
level p. In the above example, the significance level is 5%. The significance
level is related to the confidence degree in that a method for constructing
a confidence interval with confidence degree 1 — p can be used to construct
a hypothesis test with significance level p.

Note that if we cannot discard the null hypothesis, this doesn’t mean
that we may conclude that it is true. It may very well be false or highly
unlikely, but the available statistical material does not allow us to discard
it at the desired significance level.

Yoga time: Again, the null hypothesis Hy is associated with
no uncertainty or stochastic behavior. It is either true or false.
If we decide to discard Hy and it is indeed false, the method
worked. If it is in fact true, we goofed. If we do not decide to
discard Hgp, we have not made any mistake, but we have on the
other hand not gained any new knowledge about the world. The
significance level p only gives us an indication of how often we
will wrongly conclude that the null hypothesis is false. That’s
all.
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Note that the significance level and the confidence degree are not sym-
metrical: A confidence interval with 0 % confidence degree will never con-
tain the estimated parameter, but while a hypothesis test with significance
level 100 % would be a very crappy test indeed, this does not exclude the
possibility that the null hypothesis may in fact be wrong.

1.8 Further Reading

For other literature covering the material presented in this chapter, as well
as additional material, we strongly recommend [DeGroot 1975]. Another
good text book is [Mood et al 1974]. We plan to extend the section on
estimation considerably. Estimation and hypothesis testing are related to
Multivariate Analysis, see Section 2.3 when this has been written.
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Chapter 2

Applied Statistics

In this chapter we will apply the theory of stochastic variables presented in
the previous chapter to stochastic processes and information theory. There
is however a slight complication stemming from the fact that the theoretical
apparatus of the previous chapter assumes that the range of the random
variables are numbers. Here, they will be finite sets, but not necessarily
subsets of the natural numbers. This can be dealt with by constructing
a mapping between the set of outcomes of the random variable and the
natural numbers. In particular, since the range of any random variable
is finite, it will always be of the form {zi,...,zx}. We will thus tacitly
assume the mapping z; ~+ ¢ and merrily apply our high-powered theoretical
machinery.

2.1 Markov Models

This section is partly due to Thorsten Brants. Here we will briefly discuss
stochastic processes in general, before turning to Markov chains, Markov
models and hidden Markov models. We will then proceed to discuss how to
efficiently calculate the involved probabilities, how to determine the most
likely state sequence using the Viterbi algorithm, and how to find an optimal
parameter setting using Baum-Welch reestimation.

2.1.1 Stochastic Processes

A stochastic or random process is a sequence 1, &s, ... of random variables
based on the same sample space Q. The possible outcomes of the random
variables are called the set of possible states of the process. The process
will be said to be in state &; at time . Note that the random variables are
in general not independent. In fact, the interesting thing about stochastic
processes is the dependence between the random variables.

Example: Returning to the imperishable example of the un-
biased die, the sequence of outcomes when repeatedly casting
the die is a stochastic process with discrete random variables
and a discrete time parameter.

Example: Let us consider another simple example — the te-
lephone example. Here we have three telephone lines, and at
any given moment 0, 1, 2 or 3 of them can be busy. Once every
minute we will observe how many of them are busy. This will be

39
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a random variable with Q, = {0, 1,2,3}. Let & be the number
of busy lines at the first observation time, £ the number busy
lines at the second observation time, etc. The sequence of the
number of busy lines then forms a random process with discrete
random variables and a discrete time parameter.

We will here only consider stochastic processes with a discrete time
parameter and a finite sample space. Measuring the voltage in one of the
telephone lines every minute, instead of counting the number of busy lines,
in the previous example would be an example of a random process with
continuous random variables and a discrete time parameter. Continuously
monitoring the number of busy lines at every point in time would be an
example of a random process with a continuous time parameter and a finite
sample space.

To fully characterize a random process with a discrete time parameter
t, we need to specify

1. the probability P(¢; = z;) of each outcome x; for the first observa-
tion, i.e., the initial state & and

2. for each subsequent observation (state) &41 :¢ = 1,2,... the condi-
tional probabilities P(&41 = #4,,, | &1 = @4y, ..., & = 24,).

To avoid getting into a lot of mathematical trouble with defining distri-
butions over infinite sequences of random variables, we can terminate after
some finite number of steps 7', and instead use our knowledge of multi-
dimensional stochastic variables.

2.1.2 Markov Chains and the Markov Property

A Markov chain is a special type of stochastic process where the probability
of the next state conditional on the entire sequence of previous states up
to the current state is in fact only dependent on the current state. This is
called the Markov property and can be stated as:

Pllyr =i, |G =2, G=2;,) = P(lyr =iy, | & =24,)

This means that the probability of a Markov chain &1,&5,... can be
calculated as:

P(€1 :ajiu“'agt :ajit) =
= Pll=u=,) Plla=w, & =) .. P& =, | &1 =1i,_,)

The conditional probabilities P({s41 = 4,,, | & = x;,) are called the
transition probabilities of the Markov chain. A finite Markov chain must
at each time be in one of a finite number of states.

Example: We can turn the telephone example with 0, 1, 2 or
3 busy lines into a (finite) Markov chain by assuming that the
number of busy lines will depend only on the number of lines
that were busy the last time we observed them, and not on the
previous history.

Consider a Markov chain with n states si,...,s,. Let p;; denote the
transition probability from State s; to State s;, i.e., P(&41 = 55 | & = s1).
The transition matrix for this Markov process is then defined as

P11 - Pin n
Pn1 - Pnn j=1
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In general, a matrix with these properties is called a stochastic matriz.

Example: The stochastic process derived from the immortal
example of the unbiased die, can be described by a six-by-six
matrix where each element is 1/6.

Example: In the telephone example, a possible transition ma-
trix could for example be:

S0 S1 52 S3

S0 0.2 05 02 041
51 0.3 04 02 041
S 0.1 03 04 0.2
s3 0.1 01 03 04

Assume that currently, all three lines are busy. What is then
the probability that at the next point in time exactly one line
is busy? The element in Row 3, Column 1 (ps31) is 0.1, and
thus p(1|3) = 0.1. (Note that we have numbered the rows and
columns 0 through 3.)

P=

We can now determine the transition matrix for several steps. The
following is the transition matrix for two steps:

PZ(-;) = P(ly2=35 & =)

Yorey P61 = sp Néiya = 55 | & = si)

Yorey P(&us1 =50 [ & = 5i) - P(Eupa = 55 | &og1 = 57)
2721 Dir " Prj

The element pg)
element in Row 4, Column j of the matrix P? = PP. In the same way, we
can determine the transition probabilities for several steps. In general, the

transition matrix for ¢ steps is P?.

can be determined by matrix multiplication. This is the

Example: Returning to the telephone example: Assuming that
currently all three lines are busy, what is the probability of ex-
actly one line being busy after two steps in time?

Sq S1 52 S3

So 0.22 037 0.25 0.15
51 0.21 038 0.25 0.15
S9 0.17 031 0.30 0.20
53 0.12 0.22 0.28 0.24

PZ=PP =

= p) = 0.22

A vector v = [v1,...,v,] with v; > 0,i=1,...,nand Y v; = 1is
called a probability vector. The probability vector that determines the state
probabilities of the observations of the first element (state) of a Markov
chain, i.e., where v; = P(£1 = s;), is called an initial probability vector.
The initial probability vector and the transition matrix together determine
the probability of the chain being in a particular state at a particular point
in time. This probability can be calculated by multiplying the vector v with
the matrix P the appropriate number of times. If p(t)(si) is the probability
of the chain being in state s; at time ¢, i.e., after ¢ — 1 steps, then

PO, B ()] = VP!
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Example: Returning to the telephone example: Let v = [0.5,0.3,0.2,0.0].

What is then the probability that after two steps exactly two
lines are busy?

Sg S1 S3 S3
vP’=vPP =[ 021 043 024 0.12 ]
= p(&2 = s9) = 0.24.

2.1.3 Markov Models

Let us attribute each state in a Markov chain with a finite set of signals.
After each transition, one of the signals associated with the current state
is emitted. Thus, we introduce a new sequence of random variables n;,¢ =
1, ..., T representing the signal emitted at time ¢. This determines a Markov
model.

A Markov model consists of:

e a finite set of states Q@ = {s1,...,8,};
e an signal alphabet ¥ = {oy,...,0m};

e an n X n state transition matrix P = [p;;] where p;; = P(€i41 = 55 |

& = Si);

e an n x m signal matrix A = [a;;], which for each state-signal pair
determines the probability a;; = p(n: = o | & = s;) that signal o;
will be emitted given that the current state is s;;

e and an initial vector v = [v1,...,v,] where v; = P(& = s;).

The probability of reaching some particular state at some particular time
is determined just as in the case of the Markov chain. The probability that
signal o; will be emitted in the current state s; is thus precisely the element
a;; of the signal matrix. We have thus made a second Markov assumption,
namely that the probability of a particular signal being emitted does only
depend on the current state, and not on the sequence of pervious ones.

From this it follows that the probability of the model being in state s;
and emitting signal o; at time ¢ is

pD(si, o) = pD(si)  pln = 05 | & = s1)

where p(t)(si) is the ith element of the vector vP*~!. The probability that
signal o; will be emitted at time ¢ is then:

po) =Y p(siyo) =D 0 (si) - p(me = 05 | & = s1)
=1 =1

Thus if p(t)(aj) is the probability of the model emitting signal o; at time
t, i.e., after t — 1 steps, then

(1), ..., 0 (0)] = vPITIA

The Markov models described this far are of first order, i.e., the proba-
bility of the next state depends only on the current state. In an nth order
Markov model, this transition probability depends on the way the current
state was reached, and in particular on the n — 1 previous states. This
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means that we need to specify the probabilities P(si, | Siy_os- - 8i ;) A
Markov model of higher (nth) order can always be reduced to an equiva-
lent first-order Markov model by expanding out each possible sequence of
n states in the old Markov model to a state in the new Markov model.

2.1.4 Hidden Markov Models

If it is not possible to observe the sequence of states &1, ..., &p of a Markov
model, but only the sequence 5, ...,nr of emitted signals, the model is
called a hidden Markov model (an HMM).

Let O € ¥* be a known sequence of observed signals and let S € Q* be
the unknown sequence of states in which O was emitted. Our best guess
at S is the sequence maximizing

msszXP(S | O)

From Bayes’ inversion formula (Eq. 1.3), redisplayed here for your conve-
nience,

P(S|0) =

we see that this S will also maximize

mSaXP(O | S)- P(S)

since P(O) does not depend on the choice of S. Here P(O | S) is called the
signal model and P(S) is called the language model. Maximizing P(O | S)
alone would be the maximum-likelihood estimate of S, see Section 1.7.3.

Prototypical tasks to which hidden Markov models are applied include
the following. Given a sequence of signals O = (oy,,...,0,):

e Estimate the probability of observing this particular signal sequence.

e Determine the most probable state sequence that can give rise to this
signal sequence.

e Determine the set of model parameters A = (P, A, v) maximizing the
probability of this signal sequence.

Part-of-speech tagging and speech recognition are examples of the second.
Language identification would be an example of the first. The third problem
is of interest when creating a hidden Markov model.

Example: Part-of-speech tagging. The set of observable si-
gnals are the words of an input text. The states are the set of
tags that are to be assigned to the words of input text. The
task consists in finding the most probable sequence of states
that explains the observed words. This will assign a particular
state to each signal, i.e.; a tag to each word.

Example: Speech recognition. The set of observable signals
are (some representation of the) acoustic signals. The states
are the possible words that these signals could arise from. The
task consists in finding the most probable sequence of words
that explains the observed acoustic signals. This is a slightly
more complicated situation, since the acoustic signals do not
stand in a one-to-one correspondence with the words.
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We can easily specify HMMs at different levels. For example, if we have
an HMM for each phoneme defined in terms of the acoustic signals, an
HMM for each word defined in terms of the phonemes, and an HMM for
word pairs (using bigram statistics), we can expand this to a single HMM
where each acoustic signal in each phoneme in each word pair corresponds
to a unique state. Of course, this increases the number of states drastically,
and thus also the search space.

2.1.5 Calculating P(O)

We now turn to the problem of actually calculating the probability P(O
of the observed signal sequence. Let O = (opy,...,0%,) and let S =
(Siyy- - 8ip). Then

T
PO[8) = [[Pm=orl&=s) = [[ai
t=1 t=1
T
P(S) = Ui Hpit—lit
t=2
T T
P(O N S) = P(O | S) ) P(S) = (H aitkt) : (Uil : Hpit—lit) =
t=1 t=2
T
= (ailkl : Uil) : Hpit—lit C Ak,
t=2
Putting this together yields us
T
P(O) = ZP(O N S) = Z (ahkl ' Uh) : Hpit—lit C @k,
S Sig,Sip t=2

Using this formula directly requires O(27'n?) calculations. Obviously, this
is not a good idea computationally.
The forward algorithm

Instead, we reshuffle the expression and introduce a set of accumulators,
so-called forward variables, one for each time ¢ and state ¢:

ai(i) = P(O<p;&=5) = P =0ky,...,0 =0k, & = 8i)

This is the joint probability of being in state s; at time ¢ and the observed

signal sequence O<; = 0%, ,..., 0k, from time 1 to time ¢.
Note that
P(O) = P(771:‘7hw~~:77T:UkT) =

n n
= ZP(W1:Uk1:-~~:77T:UkT;5T:Sz’) = ZOZT(Z)
i=1 i=1

that
a1(1) = Pm=or;é1=8) = ajp, -v; fori=1,...,n

and that

n

ay1(j) = [Zat(i)~pij]~ajkt+l fort=1,.... T—-1;j=1,...,n

=1
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since
P(O<it1:&41 =55) =

= ZP(Ogt;ft =5;)  P(ig1 = 0ky i 641 = 55 | O<i3 & = 5¢) =
i=1

ZP(Ogt;& =5i) P41 = Okyyy | Se41 = 85) - P& = 55 | & = 54)

i=1

The first equality is exact, while the second one uses the Markov assump-
tions. Calculating P(O) this way is known as the forward algorithm and
requires O(n?T") calculations, which is a considerable savings.

The trellis

An efficient way of representing this is by the use of a trellis, i.e., a graph
with a node for each state-time pair, where each node at time ¢ is connected
only to the nodes at times ¢ — 1 and ¢ + 1. Figure 2.1 shows an example of
a trellis. Each node in the trellis corresponds to being in a particular state
at a particular time, and can be attributed some appropriate accumulator,
for example a forward variable. Using the appropriate recurrence equation,
we can calculate the values of the accumulators for the next time ¢4+ 1 from
those of the current time ¢, or possibly the other way around.

MY
YA
.

A%
\/

',;6

Figure 2.1: Trellis

The backward algorithm

Alternatively, we can define the set of backward variables:

Bi(i) = P(Osi|&=5) = Py1 = Okppys -1 = Or | & = 85)
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This is the probability of the observed signal sequence Osy = g,y .-, Oky
from time ¢ 4+ 1 to time 7" conditional on being in state s; at time ¢.
Note that

P(O) = > Pn=ok,60=5) P(n2=0%,,....00 =0k | &1 =51) =
i=1
= Zaikl'vi'ﬁl(i)
i=1

Let us define
Br(i) = 1 fori=1,...,n
and note that
Bili) = D pij Gk, Bepr(d) fort=1,...T—1;i=1,...,n
ji=1

since

n

P(Os: | & =5;) = ZP(0>t;€z+1 =55 & =1s) =

i=1
= Y POsi|&=5ibip1=5)) P&p1=s55|&=5) =
i=1
= D p0ns1 = Ok | &41 = 55) - P(Osiqn | Eg1 = 55) - Pugr = 55 | & = 54)
ji=1

Again, the first equality is exact, while the second one uses the Markov
assumptions. Calculating P(O) using the backward variables is called the
backward algorithm and also requires O(n?T') calculations.

The forward-backward algorithm

We can also use a mixture of the forward and backward variables since

P(O) ZP(O;& =s;) = EP(ng;ft =5;) P(Os: | O<s;& =51) =
i=1 i=1

n

Y P(O<iiée=15i) P(Ose [&=5:) = Y auli)- Bii)

i=1 i=1

Thus we need the forward variables a;(i) and backward variables 3;(7) at
time ¢t. These can be calculated recursively from the forward variables
for time 1,...,¢ and the backward variables for time ¢,...,7T. This way of
calculating P(O) is called the forward-backward algorithm and also requires
O(n?T) calculations.

In fact, we can define a set of forward-backward variables:

P(O3& =si) _ (i) - Be (i)
P(0) Y iz ai(i) - Bu(d)

This is the probability of being in state s; at time ¢ conditional on the entire
observed signal sequence O from time 1 to time 7'.

1) = P& =si]0)
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2.1.6 Finding the Optimal State Sequence

A first attempt at finding an optimal sequence of states could be the one
maximizing the y-factors individually:

si, = arg max 7 (1)

This does however not take the dependencies between the random varia-
bles into account. In particular, the constructed sequence may have zero
probability, since some transitions may be impossible. In fact, due to the
Markov assumption(s), this turns out to be the maximume-likelihood esti-
mate maxg P(O | S). Instead we want to find the state sequence that
maximizes P(O | S) - P(S). To this end we employ a dynamic program-
ming technique — the Viterbi algorithm.

The Viterbi algorithm

We will instead define the set of variables

6:(1) = max P(S<;—1,& =5;0<;) =

<t—1
= max P& =si,,.. .61 =54,_,,& = 5, 0<)
Siy a8,y
This is the joint probability of the most likely state sequence from time 1
to time ¢ ending in state s; and the observed signal sequence O<; up to
time ¢. We also introduce the vector () which indicates the predecessor
of state s; in the path corresponding to &;(¢).

Note that
51(3) = wvi-ap, fori=1,....n
that
8:(j) = [ml_axét_l(i) pij] cajr, fort=2,...T;j=1,...,n
i(j) = arg 1r£12_a<xn(6t_1(i) -pij) fort=2,...,T;j=1,...,n
that
P = miaxéT(i)
Sp, = arg max 67 (i)
and that
sy, = 1/)t+1(szt+l) fort=1,...,7—-1

The recurrence equation can be established as follows:

5t(j) = 1nax P(Sgt—l;ft = Sj;ogt) =
<t—1
= max max P(S<i—2,&-1=15:,& =5j;0<41,m = 0p,) =
<t—2
= max max P(& = sj;m = ok, | S<i—2,&—1 = 5i; O<4—1) -
<t—2

“P(S<i—2,6-1 = 5;;0<4-1) =
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= max max P& =sj|&-1=15:) Plpy=o0p, | & =s5) -
<t—2
“P(S<i—2,&-1 =5;;0<4-1) =
= [mZaXP(ft =5j | &—1=5;) - max P(S<i—2,&-1 = 5:;0<s-1)] -
<t—2

PO =0k, [ & =5j) =

= [maxpyj - 6:-1(2)] - ajr,

The first three equalities are exact, while the fourth one uses the Markov
assumptions.

The Viterbi algorithm can be implemented efficiently using a trellis, and
the main difference to the forward algorithm for calculating P(O) is that
here the accumulators represent maximums, rather than sums. In fact, the
number of required calculations is the same, namely O(n?T').

The Viterbi algorithm is discussed in more detail in [Forney 1973], while
general dynamic programming is well-described in [Bellman 1957].

2.1.7 Parameter Estimation for HMMs

We now turn to the problem of estimating the parameters v, P and A
defining the HMM. If we have access to annotated training data, i.e., data
where we know both the sequence of signals and the underlying sequence of
states, we can calculate the parameters directly from the observed relative
frequencies. It is however in this case necessary to deal appropriately with
the problem of sparse data as discussed in Section 2.4.

If we only have training data consisting of signal sequences where the
underlying state sequences are unknown, we have to resort to other me-
thods. Here we will define a set of recurrence equations that can be used
to iteratively improve our estimates of the parameters. By doing this right,
we can get some guarantees that each iteration will yield us a better set of
estimates.

To this end, we first define the set of probabilities

P(O;ft =5;,841 = 5]’)
O

&(, ) = P& =si,641=15;10) =

This is the joint probability of being in state s; at time ¢ and of being in
state s; at time ¢ 4 1 conditional on the entire observed signal sequence O
from time 1 to time 7.

Note that

(@) i ey, B (B) i) pig ik, B ()
e(i,j) = =

’ P(0O) 2 ae(d) pij - Ay, - Bepa ()
since

P(O;& = 54,641 =5j) = P(O<iq1,05041;8 = 5i,&41 = 55) =
= P(O<it1;& = 5,641 = 5j) - P(Osi41 | O<t413& = 53,641 = 55) =
= P(O<;& =5i) - P(ig1 = Okpyri g1 = 55 | O<t3 & = 54) -
“P(Osi41 | G411 =55) =
P(O<y;& =si)  P(&ig1 =55 | & = 55) - P41 = Okyy, | Eog1 = 55) -
“P(Osiq1 | &ep1 = 55) =
= (i) - pij - Qiryp - Pryr(G)
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For this reason, the probabilities (i, j) are also referred to as forward-
backward variables.
We immediately see that

n n
(i) = P& =s]0) = ZP(@ =si,&41=5;|0) = Z€t(i,j)
ji=1 i=1
We now observe that
y1(§) = probability of starting in state s;
T-1
Z €t(i,j) = expected number of transitions from state s; to state s;
t=1
T-1
(i) = expected number of transitions from state s;
t=1
T
Z 7:(1) = expected number of times signal o; is emitted in state s;

t:l:okt:Uj

We can now establish the recurrence equations:

v = 7(9)
T-1 ..
5 = POPAUY))
1] - T-1 .
2i=1 ()
T .
_ Zt:l:akt:(jj 7t(l)
25} =

EtT:1 7:(2)

This is known as the Baum-Welch or forward-backward reestimation algo-
rithm, but can also be interpreted as an incarnation of the EM (expectation-
modification) algorithm or as an application of Lagrange multipliers to en-
force the constraints

n

Z'UZ' = 1

i=1
n
Zpij = 1 fori=1,...,n
j=1
m
Eaij =1 fori=1,...,n
i=1

when maximizing P(O) w.r.t. A = (v, P, A). The resulting equations are

v, 22
L v, -
Vi = =g —5p fori=1,...,n
Tt
k=1 "k 3oy
pi; 22
‘) Opij : ;
bij = ﬁ fOfZ:l,...,?’L;j:l,...,TL
k=1Pik5p
. 2P
Uaal’j . .
aj; = W fore=1,...,n;5=1,...,m
k=1 %k g,

which turn out to be exactly the reestimation equations given above after
some symbolic manipulation, see [Rabiner 1989).
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Let P(O | A) denote the probability of the observation sequence O
calculated using the old parameters v, P and A, and let P(O | A) denote
this probability calculated using the new parameters v, P and A. Some
nice people have shown that either A = A or P(O | A) > P(O | )), see
[Baum 1972]. This means that we either get a better set of parameters, or
the same one, in the next iteration.

2.1.8 Further reading

A comprehensive tutorial on hidden Markov models for speech recognition
is given in [Rabiner 1989].

2.2 Elementary Information Theory

2.2.1 Entropy

Let & be a discrete stochastic variable ¢ with a finite range Qz = {z1,...,zm}
and let p; = p(x;) be the corresponding probabilities. How much informa-
tion is there in knowing the outcome of ¢7 Or equivalently: How much
uncertainty is introduced by not knowing the outcome of ¢7 This is the
information needed to specify which of the z; has occurred. We could do
this simply by writing “z;”, but let us assume further that we only have a
small set of symbols A = {ay : k=1,..., D} — a coding alphabet — at our
disposal to do this. Thus each z; will be represented by a string over A.

To get this further grounded, assume that ¢ is in fact uniformly distri-
buted, i.e., that p; = ﬁ for 2 = 1,... M, and that the coding alphabet is
{0, 1}. Thus, each z; will be represented by a binary number. We will then
need N : 2V-1 < M < 2V digits to specify which z; actually occurred.
Thus we need log, M digits!.

So what if the distribution is nonuniform, i.e., if the p;s are not all
equal? How much uncertainty does a possible outcome with probability
p; introduce? The basic assumption is that it will introduce equally much
uncertainty regardless of the rest of the probabilities p; : j # i. We can
thus reduce the problem to the case where all outcomes have probability p;.

In such a case, there are pi = M,, possible outcomes. The fact that this
is not in general an integer can be handled with Mathematical Yoga. We
thus need log, M,, = log, 1% = —log, p; binary digits to specify that the

outcome was z;. Thus, the uncertainty introduced by p; is in the general
case —log, p;. The uncertainty introduced by the random variable £ will
be taken to be the expectation value of the number of digits required to
specify the outcome. This is the expectation value of —log, P(£), i.e.,
E[—log, P(¢)] = 3_; —pi log, pi.

Now, we let D be an arbitrary base D > 0; D # 1, and not necessarily
2. Since log, X =log, D -logp X, this does not change anything material,
only introduces a scaling factor log, D, so the uncertainty could equally
well be taken to be ), —p; logp p;, for any base D > 0; D # 1. We will use
the particularly good base e & 2.72, which is not an integer, nor a rational
number, and where “log,” is usually denoted “In”. 2 Having already dealt
with sets of noninteger size, to have a coding alphabet with a noninteger
number of code symbols should be only slightly unsettling. This allows us

1Or really, the smallest integer N > logy M.
2See Appendix C.3 for a discussion of the number e and the function In x.
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to define the quantity H[], called the entropy of &:

M
HEE] = = ) pe)Inp(z;) = —Zpilnpi

Z‘,EQ&

If ¢; is another set of probabilities on ¢, then

M M
—Epilﬂpi < _Zpiln%' (2.1)
i=1 i=1

Equality is equivalent to V; p; = ¢;.
Proof: The logarithm is a convex function on the real line, i.e.,

fx) < f(mo)+ f'(z0) - (2 —xg) for all z € R. Since %lnx =1

choosing zg = 1 and thus f(zg) = 0 and f'(zg) = 1, we ha\a;e
Inz <z—1forall z€ R. In fact, if z # 1, then Inz < z — 1.
In particular

mL < L _

pi P

By multiplying by p; and summing over ¢ we obtain

M . M . M M
dSoplntt < Yt -1) = Yg - dop o= 11 =0
i=1 bi i=1 bi i=1 i=1

Thus

M " M M
Y opiln= = > pilngi — > pilnp; < 0
i=1 bi i=1 i=1

and the proposition follows. We note that if for any i, 0 # p; #
q;, we have

”
pln= < ¢ —p
v

2
and we obtain strict inequality through a similar summation. O
The joint entropy of & and 7 is defined as:

M L

HEEn) = =0 plei, y;) np(e:, ;)

i=1j=1

The conditional entropy of & given 7 is defined as:

HE [n] =
L M L M
= —Zp(yj)_zp(ri |yj) Inp(e; | y;) = —Zzp(ri,y]’)lnl)(ri | y)

The conditional and joint entropies are related just like the conditional
and joint probabilities:

HIE,m] = Hpl+ H[E [ 7]
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This can easily be established from the above definitions by utilizing the
fact that p(z;, y;) = p(y;)-p(2; | y;) and rearranging the summation orders.
The following two inequalities hold

where in both cases equality is equivalent to £ and 7 being independent.
The first one is an immediate consequence of the second one, which in turn
can be established much in the same way as the previous equation using
Eq. 2.1.

The information conveyed by 7, denoted I[¢ | 7], is the reduction in
entropy of ¢ by finding out the outcome of 5. This is defined by

I [n] = H[¢]—H[E | 7]
Note that:

¢ 9] = HEI-H[E|n] = H[E] - (H[E, 9] -H[n)) =
= H[{+H[p] - H[¢,n] = Hp]+H[E]-Hn, & = 1n|¢]

This means that the information about ¢ conveyed by 7 is necessarily equal
to the information about 7 conveyed by &.
Finally, we note that:

H¢] = E[-InP(¢)]
H¢[n] = E[-InP([n)]
Ig[n] = HE-H[ [y = E[-lnPE)] - E[-InP(E|n)] =

= E[-InP@) 4+ InP(|n)] = E[-In P](D'E(T)n)]

All this this can readily be generalized to several variables by instead
letting & and 7 denote sets of variables, and letting ¢ and j be multiindices,
i.e., ordered tuples of indices.

2.2.2 Related Information Measures
Mutual Information

A very popular quantity in the Computational Linguistics literature around
1990 was Mutual Information Statistics, denoted MI. If ¢ and 5 are two
discrete random variables, we can define the mutual information as:

P
MIle ] = Bl e
Note that this is symmectic in £ and 7, i.e., that MI[¢,n] = MI[n,£&].

Actually, the quantity presented as the mutual information in most of these
publications was the corresponding expression for the outcomes z;, and y;:

P(zi,y;)
P(zi) - P(y;)
If MI[z;,y;] > O, there is a strong correlation between z; and y;; if

MI[z;,y;] < 0, there is a strong negative correlation. We will however
let mutual information refer to the quantity with the expectation value.

MI[z;,y;] = 1In
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Now

P(¢,n) 1 P©
P(&) - P(n) P(&|n)

Comparing this with the expression for the conveyed information given at
the end of Section 2.2.1, we find

MI[§, 7] = E[ln ] = E[n ] = E[ ]

P(§)
P(¢ | n)

Thus, the mutual information is identical to the conveyed information. This

I¢|n] = E[-In ] = MIE,7

incidentally allows us to see the symmetry of the conveyed information:
I¢ | n] = MIgE ] = Mln¢ = Inl¢]

Perplexity

The perplexity of a random variable £ is the exponential of its entropy, i.e.

Perple] = M@

To take a linguistic example, assume that we are trying to predict the next
word & in a word string from the previous t — 1 ones &3, ...,&—1. The
entropy is then a measure of how hard this prediction problem is. Let
P(w} | wy,...,ws—1) be an abbreviation of P(& = w; | &1 = wiy, ..., &1 =
Why_y)-

N
Hi¢ | wy, oy wimy] = Z — P(w} | wy, ..., wy—q) - In Pw} | wy, ..., wy—1)

i=1

If all words have equal probability, i.e., P(w! | wy,...,w;_1) = %, the

entropy is the logarithm of the branching factor N at this point in the
input string:

—i-lni:lnN
N N

WE

H[ft | wy, ~-~,wt—1] =
i=1

This means that the perplexity e™ ¥ is the branching factor N itself. If the
probabilities differ, the perplexity can be viewed as a generalized branching
factor that takes this into account.

In [Jelinek 1990] we find the following definition of perplexity:

1
In Perpy, = tlim —;lnP(wl,...,wt)

where we let Perpp denote the empirical perplexity. Here P(ws, ..., w;)
denotes the probability of the word string wy, ..., wy, and should be read as
an abbreviation of P(¢1 = wgy, ...,& = wg,).

Since we cannot experimentally measure infinite limits, we terminate
after a finite test string ws, ..., wp, arriving at the measured perplexity
Perpyy:

1
In Perpy, = —TlnP(wl, e, WT)
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Rewriting P(wy, ..., w) as P(w; | wy, ..., wi—1) - P(wy, ..., wy—1) gives us

T
1
In Perpy, = fZ—lnP(wﬂwl,...,wt_l)

What is the expectation value of In Perpy,? Let’s find out!

T
1
E[ln Perpy] = E[TZ—IHP(wt|w1,...,wt_1)] =

t=1

[l
N =
M%

E[-InP(w; | wy, ..., ws1)] =

o
Il
-

— P(wi | wi, ..., wy—1) ~lnP(wi | Wy, .ywim) =

[l

N =
[M]=
] =

o
Il
-

i=1

H[ft | Wi,y .y 'wt—l]

[l
N =
M%

t

I
-

This is the average entropy at each string position of any string of length
T, corresponding to the geometric mean of the string perplexity of any
string of length 7. In view of the Law of Large Numbers, we realize that
the empirical preplexity as defined above, will approach this quantity as ¢
approches co, motivating the definition.

Cross Entropy, Relative Entropy and Metrics

Let us return to the Equation 2.1 of Section 2.2.1: If we have two distribu-
tions (collections of probabilities) p(x) and ¢(z) on Q¢, then

—Ep )Inp(z Zp YIng(z (2.2)

Equality is equivalent to ¥, p(2) = ¢(z), which means that the distributi-
ons are identical. The latter quantity,

= —Zp ) Ing(x

is often referred to as the cross entropy of ¢ w.r.t. p. The above inequality
means that the cross entropy of a distribution ¢ w.r.t. another distribution
p is minimal when ¢ is identical to p.

We can utilize this to create a distance measure for distributions by
measuring the distance between the probability collections p(z) and ¢(z).
First we note using Equation 2.1 that:

0 < Zp YInp(z) — p(x) Ing(z) Zp(x I

I

with equality only when ¥, p(z) = ¢(z). We now define
p(z
Dlolla) = Srta)n X5 = yla) - nl

This is known as the relative entropy or Kullback-Leibler (KL) distance.
A metric is a real-valued function that measures distances. Any metric
m(X,Y ) must have the following three properties:
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1. m(X,)Y) > 0and m(X,Y)=0 & X=Y.
2. m(Y,X) = m(X,Y).
3. m(X,Y) < m(X,Z2)+m(Z,Y).

The first condition states that the metric is a positive function unless the
two elements are identical, in which case it takes the value zero. The second
requirement is that the metric is symmetric, i.e., that the distance from Y
to X is the same as the distance from X to Y. The third one is called
the triangle inequality, which means that the distance from X to Y is not
greater than the distance from X to some third point Z plus the distance
from Z to Y.

Although we have established that the relative entropy has the first of
these properties, it lacks the second two. If for example p(1) = 1/4, p(2)
=3/4;r(1) =r(2) = 1/2; and q(1) = 3/4, q(2) = 1/4, then

Dip[[r] # Dlrl[[p] and
Dlpllq] > Dipl[r]+D[r|lg]

A true metric for probability distributions is the Fuclidian distance,
which is the natural measure of distance used in the real world:

d(p,q) = ¢Z(p(r)—q(r))2

Ever since Pythagoras, we sum the squares of the Cartesian coordinates
and take the square root to get the distance between two points in space.
This doesn’t have anything to do with entropy, though.

The relative entropy, and the cross entropy, can also be used for evalua-
tion. Assume that p is the true probability distribution, and that we have
various estimates ¢* of p. The best estimate is of course p itself which will,
accoring to Equation 2.2, minimize the cross entropy H,[q] and thereby also
the relative entropy D[p || ¢] = Hp[g] — H[p]. We can thus claim that the
smaller the cross entropy w.r.t. p, the better the estimate of p.

A problem with this approach is that we may not know the real distri-
bution p. However, if we take a random sample X from the distribution
ﬁ Z —1Ing¢*(x), we have an estimate of H,[¢]. So we
rzeX
can argue that if ¢* yields a lower value of this than qkl, then the for-
mer is a better estimate of p than the latter. This technique is known as
cross-entropy evaluation.

p, and calculate

2.2.3 Noiseless Coding

Let & continue to be a discrete stochastic variable £ with a finite range Q; =
{z1,...,zm} and corresponding probabilities p; = p(#;),i=1,...,pam. Let
us make a sequence of independent observations of & and call the generated
string over {z1,..., )} a message. 3 Further, let A= {ay:k=1,...,D}
be a code alphabet. We will associate with each element z; a string over
A which we will call the code word for z;. We will call the set of code
words a code. Let n; denote the length of the code word for z;, and let
n= Ef‘il pin; be the expectation value of the code-word length.

3This is an example of a discrete memoryless stochastic process, see Section 2.1.1.
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The Noiseless Coding Problem: Given ¢ and A defined as
above, construct a code that minimizes n.

A code where any string in A* corresponds to at most one message
is said to be uniquely decipherable.* This means that it is impossible to
come up with a sequence of code words that can be interpreted as another
sequence of code words. This is obviously a highly diserable property.

Still, we can do even better than this by requiring that it should be
possible to determine the code word without looking further into the coded
message. Such a code is said to be instantaneous. One way of guaranteeing
this is to require that no code word is a prefix of another code word. A little
afterthought yields that this is actually a necessity for an instantaneous
code. Note that an instantaneous code is also uniquely decipherable.

Let us temporarily assume that in addition to £ and A, the code word
lengths n; : ¢ = 1,..., M are also prescribed. How can we determine
whether or not it is possible to construct a uniquely decipherable, or in-
stantaneous code? The answer is simply that the existence of both an
uniquely decipherable code and an instantaneous code is equivalent to the
requirement Zf‘il D~mi < 1.

Proof: <To be written> O

Amongst other things, this means that if we can construct an uniquely
decipherable code, we can also construct an instantaneous code.

Returning to the noiseless coding problem, where we again are in com-
mand of the code-word lengths, we can establish the following lower bound
on the mean code-word length n:

= Son > R
Z i il D
Equality in the above > is equivalent to V;cq1 . arypi = D77, This is
known as the Nouseless Coding Theorem. Here, the size D of the code

alphabet is often referred to as the base of the code.
Proof: <To be written> O

In general, it is impossible to find integers n; : p; = D™"¢. To construct
an optimal code, we will do the second best thing and choose n; such that

—Inp; <
InD —

n; — 1 n;

We can construct an instantaneous code with these code-word lengths.
Firstly, note that the second inequality implies that p; > D~"¢. Thus,
there exists an instantaneous base D code with these code-word lengths,
since

ED nl<zpz =
i=1

So what is the mean code-word length of this code? From the first inequality
we have

M M
mez < Zpl L AP Br < /LY TN o 1 T

‘InD InD P InD

4 A* denotes all possible strings over the Alphabet A including the empty string.
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and similarly from the second inequality we have

M M M
_ —Inp; =2 =1 Pilnp; H[¢]
= ing 2> i = = =
" ;p" = ;p In D In D InD

Thus we have proved that

Given a discrete random variable £ with finite ¢ and with
entropy H[¢], there exists an base D instantaneous code whose
mean code-word length n satisfies

Hg  _ _ H[
mp S " s ppt!

Now assume that we instead of inventing code words for individual
symbols z;, invent code words for blocks of length s, i.e., strings over
Q¢ = {z1,...,2n} of length s. This is known as block coding. This will
correspond to the outcome of s independent observations & : 4 =1,...,s
of ¢£&. We can then cut down the interval to

Hgl H[E] | 1
mp S ™ S mpts

Here n; is the mean code word length per symbol in €.

To actually construct an optimal code, we will turn to the special case
of D = 2. The procedure is much the same for D > 2. We can without
further loss of generality assume that the coding alphabet A is {0,1}. We
will describe the Huffmann Procedure, which works by recursion over the
cardinality M of Q.

If M = 2, then we assign z; the code word 0, and z5 the code word 1.

If M > 2, we proceed as follows: Firstly, we may without loss of gene-
rality assume that ¢ < j = p; < p;, and that within each group of symbols
with equal probability, the symbols are ordered after code word length.
Thus z37_1 and z have the smallest probabilities. For any such optimal
instantaneous code of size M we have the following;:

lLi<j=n; <nj.
2. Npyr—1 =Np .

3. At least two code words of length nas have a common prefix of length
Ny — 1.

Proofs:

1. If this were not the case we could simply swap code words
for z; and z;, reducing 72 and contradicting the optimality.
O

2. If this were not the case we could simply strip the last digit
from Wjy, reducing n and contradicting the optimality. O

3. If no two code words of length ny had a common prefix
of length ny; — 1, we could strip the last from digit all
code words of length njys, reducing n and contradicting
the optimality. O
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The reason that we can strip the last digit from a code word
without the result being another code word is the fact that the
code is assumed to be an instantaneous code, were no code word
is the prefix of another.

We construct a problem that is one step smaller by dropping z s, letting
p; = p; for i = 1,..., M — 2, and setting ply;_; = pam—1 + py. We solve
the problem of size M — 1 by recursion (most likely after having reordered
the symbols, since pfy,_; is most likely no longer the smallest probability),
yielding an optimal instantaneous code ¢/ ={W/:i=1,...,M — 1}. We
now construct from this a code C = {W; :i=1,..., M} for the problem of
size M. This is done by setting W; = W/ for i = 1,..., M — 2 and setting
WM_1 = lew_lo and WM = WJIW—ll'

The Huffman procedure results in an optimal instantaneous code C.

Proof: We prove this by induction over the size M. For the
base case M = 2, we have the code 1 — 0 and z» — 1, which
is clearly both optimal and instantaneous.

If C' is instantaneous, then C will also be instantaneous, since
due to the way the code C’ is extended, no code word will be
a prefix of another. We now need to prove that given that the
procedure yields an optimal code for size M — 1, it will also
yield an optimal code for size M. Assume the opposite®, i.e.,
that there is a better code C" = {W/' :i=1,..., M}, and thus
that Zf‘ilpingl < Ef‘il pin;. We will use this code to create
a new code C"" = {W/" :i=1,...,M — 1} for M — 1 that
is better than C’, contradicting the induction assumption and
thus establishing the induction step.

Again we remove Wi, and set W/ =W/ fori=1,...,M -2,
strip the last digit from W}, _,, and assign p;_, = pm—1+pum-
Before we deliver the final blow, we will summerize what we
have got this far:

n, = njfori=1,...,M—2
n = npffori=1,... M -2
nyM—-1 = nNpmM
!
ny_, = ny-1—1
1" _ "
My = Ny
" _ "
ny oy = ny_g—1
111 11 / .
i = p; = p; = pifori=1...,M -2
11 _
Py—1 = PM-1
111 _ / _
PM-1 = Pm-1 = PM-1+DPM
11 _
Py = PM

M M

ZPM? < mei

i=1 i=1
Now we go for the kill:

M-1 M-1

11111 /1 _
E p;n; — E pn; =
=1 i=1

5This is a regular trick in Mathematics: To prove P under the assumptions I', assume
- P and prove that =P A" = L. Of course, I is required to be consistent.
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M—2 M—2
_ 1111t 111 1"t /1 / ! _
= E Py Py — E Pl —Pym—_1My—1 =
i=1 i=1

M—2
= E ping + (pm—1+pm)(nhy_ — 1) —
=1
M—2

- Z pini — (pm—1 + pyr—1)(np-1 — 1) =
i
M-2
1" 1" 1"

= Z ping +PM—1Ny 1+ PMNy 1 — PM-1—PM —
=1

M-2

- Ping — PM—-1NM -1+ PMNM -1+ PM-1+PM =

=1

M M
= ZPW;‘/ - Epmz' <0
i=1 i=1

Thus C" is a better code than C’, and we have established a
contradiction. The induction step must therefore be valid, and
thus the entire claim. O

2.2.4 More on Information Theory

The plan is to extend the section on Information Theory considerably to
include among other things the Noisy-Channel Model. In the mean while,
we refer the reader to [Ash 1965].

2.3 Multivariate Analysis

The plan is to include a rather long section on Multivariate Analysis. In
the mean while, we refer the reader to [Tatsuoka 1988].

2.4 Sparse Data

The plan is to include a section on Sparse Data covering at least the follo-
wing:

e Overtraining.

o Back-off Smoothing: Use the distributions in more general contexts
to improve on the MLE of the probs (ie, rel freqs).

e Good-Turing Reestimation: General consideration on how population
distributions behave. r* = (r 4+ 1) - N—J(,‘*‘—l and P, = . Controversial
intuition: Population size for each rank invariant, N, -r = C or

N, = £. Cf. Zipf’s law, [Zipf 1935].
e Deleted Interpolation: Maximize the probability of held out data
w.r.t. the backoff weights.

e Successive Abstraction.

In the mean while, we refer the reader to [Jelinek & Mercer 1980] for Deleted
Interpolation, to [Good 1953] and [Katz 1987) for Good-Turing reestima-
tion, and to [Samuelsson 1996] for Successive Abstraction.
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Chapter 3

Basic Corpus Linguistics

3.1 Empirical Evaluation

Chinchor et al. write in Computational Linguistics 19(3): ” One of the com-
mon problems with evaluations is that the statistical significance of the
results is unknown”, [Chinchor et al 1993], p. 409.

Empirical evaluation of natural language processing systems in general
is very young. The attempt to put evaluation of the efficiency of speech
recognition, and natural language processing systems on solid grounds star-
ted at the end 80ies in the US within the (D)ARPA! speech and natural
language workshops as well as the (D)ARPA message understanding con-
ferences. First evaluation settings were so called blackbox evaluations,
i.e. the systems under evaluation are tested as a whole, no information
about the performance of single system components can be made. In order
to cope with this drawback a different type of evaluation setting, called
glassbox evaluation, has been created. The task is to provide guidelines
and measures for detailed evaluation of single system components. Crucial
preconditions for efficiency evaluation are: (1) thoroughly designed test ma-
terial, corpora annotated according to the tasks tested, and (2) suiteable
evaluation models and measures.

The theoretical background for measuring system efficiency stems from
information retrieval research. In the following major characteristics of a
basic efficiency evaluation model, and its adaptation to natural language
processing tasks will be described.

3.1.1 Contingency Tables

Contingency tables are matrices to represent classifications of observations.
The use of contingency tables in natural language system evaluation was
influenced by work in information retrieval research. In a simple setting
contingency tables summarize results of binary decisions (yes/no decisions)
on categories which are defined to classify a text. Considering a single ca-
tegory n binary decisions have to be made to characterize n units of text,
see figure 3.1. The elements of a in figure 3.1 are called true positives
or hits more colloquially speaking, i.e. elements that are correctly detected
as positives by the system. The elements of b are named false positi-
ves or false alarms, i.e. elements that are wrongly considered as positives.

1 (Defence) Advanced Research Projects Agency
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Element classes ¢ and d are called false positives (misses) or true ne-
gatives (correct rejections) respectively. False negatives are positives that
are rejected by the system, true negatives on the contrary are correctly de-
tected negatives. In terms of probabilities the fields of a contingency table
are filled with conditional probabilities, see figure 3.2, with A representing
the number of positive decisions made by the system, N representing the
number of rejections made by the system, a and n representing the total
number of positives and negatives in the test set. Note that the proba-
bilities of true positives and false negatives, and false positives and true
negatives respectively sum up to one.

Yes 1s Correct  No is Correct
Decides Yes a b a+b
Decides No C d c+d
atc b+d a+b+c+d=n

Figure 3.1: contingency table for binary decisions, c¢f. Chinchor et al. 93

Yes is Correct No is Correct
Decides Yes P(Ala) P(Aln)
Decides No P(Nla) P(N|n)
1.0 1.0

Figure 3.2: contingency table with probabilities

3.1.2 Important Measures on Contingency Tables

The most important measures defined on contingency tables are the comple-
teness measures recall, also known as true positive rate, fallout, the false
positive rate, and precision, a measure for accuracy. Recall and fallout
were first used in signal detection theory [Swets 64] to measure a system’s
ability to detect signals within noise. In information retrieval fallout is of-
ten replaced by precision. Another measure interdependent with precision
is error rate.

In terms of distinguishing signals from noise, recall characterizes the
number of correctly detected signals wrt. all signals presented. Fallout
determines the number of correctly detected non-signals relative to the total
number of non-signals, and precision determines the number of correctly
detected signals relativ to the total number of items considered as signals
by the system.

According to figure 3.1 recall, fallout and precision can be defined as
following:

recall = —2
a—+c
b
fallaut = b—|——d
a true_positives

precision = = accuracy

a+b - true_positives + false_positives

error_rate = 100% — precision
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3.1.3 Extended Contingency Table Model

In evaluation of message understanding systems the contingency table mo-
del is adapted according to the needs of natural language systems’ evalua-
tion for more fine-grained and distinctive scoring. The binary decision bet-
ween correct and incorrect system output as characteristic for contingency
tables is replaced by a dichotomy of answers between correct and incorrect.
This is achieved by modelling the system as making binary decisions bet-
ween generation of correct and incorrect fillers for database templates. For
each message in the test set appropriate fills for the database templates are
predefined. These template fills are called answer keys.? Thus the number
of YES decisions made by the system is regarded as the number of fillers
generated by the system, while the number of positive decisions to be made
at all is the number of fillers in the answer key. Figure 3.3 gives an over-
view of scoring criteria developed within MUC-3 ([MUC-3 1991]). Partial
matches (PAR) between system answers and answer keys are scored as half
correct.

Category Criterion

Correct COR system response = key

Partial PAR response = key

Incorrect INC response # key

Spurious SPU blank key vs non-blank response
Missing blank response vs non-blank key
Noncommittal NON  blank response and blank key

Figure 3.3: scoring criteria, cf. Chinchor et al. 93

3.1.4 Measures, Extended

According to the above established criteria the already familiar evaluation
metrics of recall, precision and fallout can be computed. Recall refers to
the completeness of fills attempted by the system. Precison refers to the
accuracy of attemted fills, and fallout refers to the degree of incorrect fills
produced by the system relative to the number of possible incorrect fills
(POSINC). A new measure, called overgeneration, is introduced. Over-
generation refers to the degree of spurious generation, i.e. the number
of false decisions (not correct items are judged as correct) wrt. the total
number of decisions made by the system.

In order to provide non-trivial information on system effectiveness at
least two measures have to be considered. Perfect system performance for
instance could be characterized in terms of 100% precision and 100% recall
or 100% recall and 0% overgeneration.

COR+05%xPAR

Il =
reca 0S5
HxPA
precision = COR + %
INC + SPU
fallout = “POSINC

2For a detailed description of generation of answer keys see [Chinchor et al 1993].
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SPU
ACT

overgeneration =

#POS =#COR+ #PAR+ #INC + #MIS

#ACT = #COR+ #PAR + #INC + #SPU

Another type of measure is the so called “41-2-scoring”, which origi-
nates from evaluation of speech recognition systems. The measure allows
for the option not to answer without penalty. Correct answers are scored
+1, incorrect ones are scored -2, and no system responses are scored -1.

3.1.5 Loose Attempts on Measuring System Efficiency

Apart from systematic attemts to evaluate the performance of systems, a
number of other, more or less loose, criteria are mentioned in the literature:
time and space complexity (O-notation), measures for the correctness of the
output of part-of-speech taggers, robustness, and ease of adaptability to dif-
ferent domains or languages. The effectiveness of part-of-speech taggers is
measured in terms of accuracy, i.e. the percentage of correctly assigned
parts-of-speech in running text. The notion of robustness addresses a sy-
stem’s ability to cope with corrupted or ungrammatical input. This feature
is extremely relevant for real world applications, where ungrammatical® and
corrupted input is likely to appear, e.g. speech signals corrupted by noise,
repairs in speech, headlines and various kinds of insertions in newspaper
text, etc. Even though robustness is a major factor for a system’s quality,
there are no objective criteria for measuring robustness. The same is true
for adaptability. Adaptability addresses the question how easily a system
can be adapted to new domains and languages.

In the following we examine criteria for empirical evaluation of part-of-
speech taggers.

3.1.6 Empirical Evaluation of Part-of-Speech Taggers:
A Case Study

The most prominent feature in the evaluation of part-of-speech taggers is
accuracy. There might be at least two accuracy measures, one measuring
the percentage of correct output on word level, the other measuring the
percentage of correct output on sentence level, cf. [Merialdo 1994]. It is
obvious that accuracy on sentence level will always be below accuracy on
word level. The performance of state of the art taggers is exclusively mea-
sured by word level accuracy. Word level accuracy of state of the art taggers
ranges from 95% [Church 1988], 96% [DeRose 1988], [Cutting et al 1992]
to the extreme of 99% [Church 1988]. For a discussion of comparability
problems of accuracy data cf. also [Abney 1997]. Accuracy is coupled with
different conditions the systems operate on. Thus comparability of the qua-
lity of the output of systems depends on comparability of conditions such
as:

3Ungrammaticality as opposed to a strong notion of grammaticality such as Chom-
sky’s notion of competence grammar.
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e Size of the tagset used: It is more likely to achieve modest tagging
results with a small tagset.

e Size of training corpus and size of tagset: The size of the training set
wrt. the size of the tagset used affects accuracy. Taggers working on
small tagsets achieve relatively good results when trained on small
corpora (some 10 to 100 000 words) while increasing the size of the
tagset reduces accuracy in case the size of the training set is not
increased accordingly.

e Type of training and test corpus: The type of corpora used for trai-
ning and testing affects the quality of a tagger’s output in several
ways. Accuracy differs whether training and testing material are
derived from a similar type of corpus or not, and whether the sy-
stems compared train and test on comparable corpora. As an exam-
ple for differences in training and test corpus see experiments with
VOLSUNGA [DeRose 1988]. The experiments revieled accuracy dif-

ferences due to the type of test corpus.

e Complete or incomplete vocabulary: Accuracy is higher in case all
words in the test corpus are known (complete vocabulary) than in
case the test text comprises unknown words (incomplete vocabulary).

e Type of vocabulary: Different systems make use of different types
of vocabulary, such as vocabulary derived from test and/or training
corpus including frequency information relativ to the corpus in que-
stion, external lexica with or without a morphology component, extra
lists of collocations, etc. An example for the effect of the change in
accuracy due to change in vocabulary is given in [DeRose 1988]. The
addition of an idiom list to the vocabulary improved the accuracy of
the tagger described from 94% to at least 96%.

Accuracy also differs wrt. the trade-off between training method, size
of training corpus, and number of iterations in training. For a detailed
analysis see [Merialdo 1994].

Summing up, questions typically kept quiet about are:

How successful is a tagging method reaching 96% accuracy when 90%
‘7

On the basis of which data is accuracy computed? Is it either a
measure of precision or simply the percentage of positives found?

Are the figures reported for the accuracy of different taggers compa-
rable at all?

3.2 Corpora

The number of corpora (text and speech), and lexical databases available is
constantly increasing; see for example figure 3.2. Various initiatives for data
collection and specification of annotation guidelines exist, cf. figure 3.1.
Especially, LDC has become a major site for the distribution of corpora,
lexical databases, and corpus processing tools.
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Initiative Acronym Location
Data Collection Initiative ACL/DCI University of
of the Association of Pennsylvania, USA

Computational Linguisitcs

European Corpus Initiative ECI University of Edinburgh,
Scotland

(Defense) Advanced Research (D)ARPA/LDC
and Projects Agency

Linguistic Data Consortium LDC

Text Incoding Initiative TEI University of
Pennsylvania, USA

International Computer Archive | ICAME Bergen, Norway

of Modern English

Centre for Lexical Information CELEX Nijmegen, NL

Table 3.1: data collection and coding initiatives

3.2.1 Types of Corpora

Corpora are used for training and testing of statistic models of natu-
ral language and speech, and for evaluation of components of natural
language systems; cf. sections 3.1 and 3.2.2. We distinguish raw and
annotated corpora. Annotations are formal representations of partial lin-
guistic descriptions. Due to generalization properties (find local maxima
from parameters set) of statistical models, learning from annotated data
(supervised learning) leads to better results than learning from raw data
(unsupervised learning). Corpora differ according to the selection of mate-
rial collected. We distinguish balanced, pyramidal and opportunistic
corpora.

The most prominent types of corpora are part-of-speech tagged cor-
pora, and corpora annotated with syntactic structure. They are used
for various kinds of natural language statistics such as part-of-speech tag-
ging, stochastic grammar induction, stochastic parsing, disambiguation of
structural or semantic ambiguities, machine translation, lexical knowledge
acquisition, etc. In the case of machine translation, parallel corpora
are required, i.e. corpora that consist of texts and their translations. For
training and testing of speech recognition systems, time aligned, phon-
logically transcribed speech corpora are required. For the time being,
corpora anotated with discourse structure and semantically annota-
ted corpora are rare. (Cf. table 3.2.)

Corpora According to Text Type

Balanced corpora per definition consist of different text genres of size
proportional to the distribution (relevance) of a certain text type wi-
thin the language in question. Which of course is tricky to operatio-
nalize. See the Brown Corpus as an attempt to construct a balanced
corpus.

Pyramidal corpora range from very large samples of a few representative
genres to small samples of a wide variety of genres.
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Opportunistic corpora: Most corpora available can be characterized as
opportunistic which means “take what you can get!”

Corpora According to Annotation Type

Raw: Text is tokenized and cleaned, e.g. control characters are eliminated.
Text type, headlines, and paragraphs are possibly marked. Cf. the
ECI MCI.

PoS-tagged: Raw text is annotated with syntactic category at word level
(part-of-speech PoS).

Treebanks: PoS-tagged text is annotaded with sceletal syntactic struc-
ture. Typically, a parse grammar is defined. Corpora are automati-
cally parsed. Parse trees are selected and if necessary corrected by
human annotators. Word strings for which no parse tree is found by
the grammar are either omitted or manually annotated. Cf. the Penn
Treebank I and II, [Marcus et al. 1994].

Linguistically interpreted corpora: In contrast to treebanks, where only
syntactic category and phrase structure is annotated, linguistically
interpreted corpora aim at deliberate annotation of various kinds of
linguistic information; cf. [Black et al. 1996], [Skut et al. 1997].

Corpora According to Use

Training: Statistical models for NL and speech processing are trained on,
we may also say learn from, large, typically annotated corpora.

Testing: Test corpora are used for evaluation of statistical models after
training.

Evaluation: For system component evaluation, particularly annotated cor-
pora (cf. [MUC-3 1991]) and test suites (cf. [Lehmann et al. 1996])

are used.

3.2.2 Test Suites versus Corpora

Test suites are deliberately constructed linguistic data, specified according
to particular features to be tested. Thus, the annotation schemes are de-
signed such that the characteristics of particular linguistic phenomena are
optimally captured. Test suites are:

o Artificial: Selected linguistic phenomena are considered in isolation.
Example data are constructed such that particular phenomena are
exhaustively described. The lexicon is kept as small as possible.

e Restricted with respect to the number of phenomena treated: Only
phenomena central to the particular evaluation task are described.

e Descriptive: Linguistic properties of isolated phenomena are descri-
bed. Theory specific assumptions are avoided.

e Competence driven: The examples are constructed by linguists ac-
cording to the above specified criteria.

e Collections of positive and negative examples: The linguistic pheno-
menon of interest is described by systematically varied, annotated
grammatically correct and false examples.
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In contrast to test suites, corpora consist of real world data, i.e. lan-
guage data as occurring in running text and speech. Thus, major charac-
teristics of corpus data are:

e Linguistic phenomena occur in context.

e Combination of performance and competence aspects of language:
Corpus data reflect language usage. Thus, all data, even data that are
false in terms of competence grammar must be considered as positive
data.

e Frequency information on a variety of phenomena instead of full co-
verage of selected phenomena.

e All data appearing must be captured by the annotation scheme.

3.2.3 Tokenization

Tokenization of text, i.e. splitting up a text into tokens (words, numbers,
abbreviations, acronymes, dates, etc.) is not as simple as it might seem at
first glance. To get a flavour of what is meant, see the following examples.

Full Stop versus Period: Sentence boundaries are not obvious. Periods
are tokens on their own (full stop), or they are part of tokens, e.g. in
the case of abbreviations, dates, ordinals, enumerations.

Dashes: might be token internal (needle-like, corpus-based), but they are
also used for punctuation (..., will contain 16 processors - twice as
many as ... ). The distinction seems to be easy, but what if blanks
are missing or wrongly inserted? Words are usually delimited by
blanks, or a blank and a punctuation mark. Most English compound
nouns in contrast to German ones are graphically not distinct from
non-compounds (fruit cake, sandwich maker). There are even worse
cases: how to deal for instance with New York-based? Dashes also
appear in clitics such as in French verb subject inversions, e.g. a-t-il
(has-t-he). Here the question arises: How many tokens are there?
One — a-1-il, two — the verb a (has) and the pronoun il (he), three
— verb, pronoun and clitic #, or even five — verb, hyphen, clitic t,
hyphen, pronoun? A standard solution is to delete the clitic t and
the hyphens during preprocessing, thus information on the clitic is
lost. A solution to preserve information given by the clitic is either
to consider the whole string as one cliticised token, or as complex
expression consisting of three tokes, namely the verb «, the clitic ¢,
and the pronoun il

Acronyms: appear in various shapes:

e capital letters only e.g. IBM (International Business Machines),
BBC (British Broadcasting Company);

e uppercase and lowercase letters mixed with or without periods,
e.g. Ges.m.b.H. (Gesellschaft mit beschriankter Haftung, private
limited liability company);

Thus, acronymes must be distinguished on the one hand from ordi-
nary words in capital letters such as headlines, and on the other hand
from abbreviations. A clear distinction between abbreviations and
acronyms is problematic as acronyms are abbreviations that function
as names or have become names.
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Apostrophes: There is a number of words occurring with a single quote,
such as engl.: can’t, he’ll, he’s, father’s, or 'z in the French string les
'z oreilles (the 'z ears). Can’t is really tricky as it can be rewritten
as cannot or can not. While the first looks pretty like a single word
(one token), the second consists obviously of two tokens, a verb and
an adverb. He’ll can be rewritten as he will, thus a two token analysis
seems to be justified. As a consequence ’ll must either be considered
as a word, or reinterpreted as will. From a linguistic point of view the
second solution would be the preferred one. In the case of he’s and
father’s, we have a similar surface form wordstring+apostrophe+s?,
but different interpretations of s, with the former a shorthand for
the verb s, and the later a morphological marker for case genitive.
Thus, a two token analysis of the former, but a one token anaysis for
the later is justified. In the case of les 'z oreilles, 'z represents the
phonological liaison between the phonemes [s] and [o]. Thus, z neither
belongs to les nor to oreilles and therefore should be treated as token
on its own.

3.2.4 Training and Testing

There are different ways to train and test stochastic models for natural
language and speech processing;:

Training and testing on one corpus type: A corpus is divided into two
parts comprising similar text genres. One part (the larger one) is used
for training and thus is called training corpus, the other part is used
for testing, obviously the test corpus.

Training and testing on different corpus types: If a statistical mo-
del is trained on one corpus type and tested on another, the result is
likely to be worse than the result obtained from training and testing
on the same corpus type. In order to get a clearer picture of a model’s
performance it is trained and tested on various subcorpora.

Testing on the training set: This is what you better don’t! Testing on
the training set means that the same corpus is used for training and
testing, which is a major sin in corpus linguistics. Due to the fact
that the model is already optimized on the test corpus, the outcome of
testing is much better than it would be for any another test set. Thus,
no valid statement about the performance of the statistical model is
possible.

3.2.5 Tagsets

Tagsets vary in size, contents, complexity, and level of annotation.

The size of tagsets varies from approx. 40 to 200 different tags, e.g. 36
PoS-tags and 20 tags for non-terminals in the Penn Treebank, or 197
PoS- tags in the London-Lund Corpus.

Tagsets differ with respect to linguistic classification , see for instance
German participles. They can be classified as verbal and adjectival
or verbal forms. In the later case, participles used as adjectives and
adjectives proper fall into one class. Thus, depending on the decisions

41 is here used as concatenation operator.



70 CHAPTER 3. BASIC CORPUS LINGUISTICS

made in the annotation scheme, tagsets are not necessarily compati-

ble.

Tagsets vary in granularity of the information conveyed. The LOB and
Brown tagsets for instance distinguish conjunctions and prepositions,
whereas this information is conflated into a single tag in the Penn
Treebank. In contrast to tagsets with different classifications, tagsets
with different granularity but the same partition of linguistic infor-
mation can be easily transformed into each other.

Tagsets differ with respect to the complexity of tags, i.e. atag could
convey simplex or complex information. Part-of-speech tags for in-
stance represent syntactic category only or syntactic category and
inflection . The former is sufficient for languages with little inflection
such as English. The later is perferable for highly inflecting languages
like German and French.

Summing up, current tagsets represent mainly syntactic information,
i.e. syntactic category (such as noun, verb, adverb, adjective, pronoun,
article, etc.), and phrase structure (non-terminals, such as NP, VP, S, ...).
Even in the case of highly inflecting languages, morphological information
is largely omitted in the annotion.

In the majority of tagsets different classes of information are mingled
into a single tag; e.g. syntactic category and inflection, word level and
phrase level information. A typical example for the former are verbs as
they usually are annotated according to their syntactic category (main,
auxiliary, modal) and their inflectional properties, such as finite, infinite,
past participle, present participle.

Examples for the later are adjectives and pronouns. Adjectives are often
categorized as attributive or predicative. Thus, phrase level information
is annotated at word level. Some German pronouns for instance can be
annotated according to their syntactic context as attributive (e.g. wviele
Kinder kamen, many children came), substituting (e.g. viele kamen, many
came), or even as accompanied by a determiner (die vielen Kinder kamen,
the many children came). Cf. the tagset presented in [Thielen and Schiller
1995].

Apart from syntactic category and inflection, tagsets also comprise tags
for foreign words, unknown words, multi-word lexemes, symbols, etc. Tag-
sets for semantic or pragmatic annotation are still rare.

For examples of various tagsets see appendix D.
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Corpus Name Appearance Availability
Brown Corpus text freely available

PoS-tagged contact:

LOB (Lancester-Oslo/Bergen Corpus
and London/Lund Corpus)

British National Corpus

United Nations
Parallel Text Corpus

Language Bank of Modern Swedish

Wall Street Journal

DSO Corpus

Collins English Dictionary '79 edition

CELEX-2

Word Net
Penn Treebank I1

ECI MCI
European Corpus Initiative’s
Multilingual Corpus 1

MARSEC
Machine-Readable
Spoken English Corpus

Groningen Speech Corpus

TIMIT

ATIS

VERBMOBIL

retagged and parsed
by Penn Treebank project

text
PoS-tagged

text and speech
PoS-tagged

parallel text
English, French, Spanish

text
partially with concordances

text

sense-tagged English
nouns, verbs

lexicon

lexicon
English, German, Dutch

graphemic, phonemic transcription

morpheme and syllable structure
word stress

conceptual word hierarchy

text

PoS-tagged

phrase structure
dependency structure

raw text

speech
orthographic transcription
time-aligned

speech
orthographic transcription

speech

time-aligned

phonetic and orthographic
transcription, speech waveforms

speech

graphemic transcription
classification of
utterances

speech waveforms

speech

dialogues

orthographic transcription
dialogue structure

Henry Kucera@brown.edu

not freely available
contact: LDC
ldc@linc.cis.upenn.edu
http://www.ldc.upenn.edu

available through ICAME

contact: icame@hd.uib.no

freely available
within Europe
contact: natcorp@oucs.ox.ac.uk

available through LDC

non-commercial use only
contact: Goteborg University

Dept. of Cl

available on ACL/DCI CD-ROM I

available through LDC

available on ACL/DCI CD-ROM I

available through LDC

available through LDC

contact: l1dc@linc.cis.upenn.edu

available through ELSNET

contact: elsnet@let.ruu.nl

available through
Uni Lancester
Dept. of Ling.

available through SPEX

contact: spex@spex.nl

available through LDC

available through LDC

available

Table 3.2: corpora and lexical databases
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Chapter 4

Stochastic Grammars

The basic idea behind stochastic grammars is to augment a grammatical
theory with probabilities, thereby assigning probabilities to strings, parse
trees and derivations. Or as Rens Bod puts it ([Bod 1995b], p. 14):

“What does a statistical extension of a linguistic theory, often
referred to as a “stochastic grammar”, look like? In the lite-
rature, we can observe the following recurrent theme: (1) take
your favorite linguistic theory (a competence model), (2) attach
application probabilities to the productive units of this theory.”

There are several reason for wanting to do this. One reason is to be
able to rank various word strings according to probability to select the most
probable one from a set of string hypotheses, for example generated by a
speech-recognition system. In this case, the stochastic grammar is used as a
language model. Another reason is to be able to select a preferred analysis,
amongst those assigned to a given word string by the linguistic theory, by
selecting the most probable one. In this case, the stochastic grammar is used
for disambiguation. A third reason, although related to the second one, is to
speed up parsing and/or limit the search space by pruning away suboptimal
or improbable search barnches, so-called preference-based parsing. [Kimball
1973] and [Marcus 1980] constitute highly interesting reading on rule-based
versions of this, and their psycholinguistic motivations.

We will in the following consider various stochastic extenstions of context-
free grammars, and we will start by recapitulating some formal language
theory.

4.1 Some Formal Language Theory
A formal grammar is a system for rewriting strings over some alphabet V.

4.1.1 Context-free Grammars

A context-free grammar G is a quadruple (Vy, Vr, S, R) where:

VN is a finite set of nonterminal symbols.

Vr is a finite set of terminal symbols. Let V denote Vi U Vp.

S € Vy  is a distinguished start symbol, or axiom.

R is a finite set of productions X — § where X € Vy and g € V*.

The string aXvy € V* can be rewritten in one step as afy € V* iff
X — fisin R. This means that one occurrence of the nonterminal symbol

73
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X in a string is replaced by the string . This is denoted aXvy = af7y.
In general, if a string ¢ € V* can be rewritten as the string ¥ in a finite
number of steps, this is denoted ¢ =* . Thus =" is the transitive closure
of the relation =. The number of rewrite steps can be zero, thus allowing
¢ =" ¢, 1.e.,, =" is reflexive. If S =* ¢, i.e., if ¢ can be derived from the
start symbol S, then ¢ is said to be a sentential form.

L(G) denotes the set of strings over Vp generated by G and is defined
as {w eV} :S="w}

A context-free grammar is said to be in Chomsky Normal Form (CNF'),
if the productions are either of the form X; — X; X, a binary production
rewriting a nonterminal as two nonterminals, or of the form X; — w where
w € Vp, a unary production rewriting a nonterminal as a single terminal
symbol. Also allowing productions of the form X; — Xj, i.e., unary pro-
ductions rewriting a nonterminal as another single nonterminal, results in
grammars in Eztended Chomsky Normal Form (ECNF).

4.1.2 Derivations

A derivation of a string of terminal symbols w is a sequence of string rewrites
S=¢p=>..=>dy=uw

over V' where the first sentential form, ¢g, consists of the axiom S only and

the last one, ¢y, is w. This is the leftmost derivation iff in each step, the

leftmost nonterminal symbol of the sentential form is rewritten. A leftmost

derivation step is denoted =>; and the transitive closure is denoted =7.
This means that for a leftmost derivation

Om = aXy
a € Vp
X € Wy
y € V*
X—=0 € R
dmy1 = afy

Note that ¢,, is uniquely decomposed into an initial (possibly empty) string
of terminals, followed by a nonterminal, followed by the rest of the string.
Since this specifies in each rewrite step which nonterminal of the string
will be rewritten, we can represent a leftmost derivation as the sequence
r1,...,rpy of rules applied in each step.

We will now proceed to establish the correspondences between deriva-
tions and parse trees.

4.1.3 Trees

A tree 7 is a connected directed acyclic graph. Let the set of nodes be
denoted . There is a function £ that maps the nodes of the tree into some
set of symbols, the so-called labelling function. The arcs in the tree depict
the immediate-dominance relation ZD. If n immediately dominates n’, then
n is called the mother of n’ and n' is called a daughter of n. The immediate-
dominance relation is intransitive and irreflexive. Its transitive closure is
called the dominance relation, denoted D. This relation is transitive and
antisymmetric, and thus reflexive.
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There is also a partial order indicated by the horizontal position of
each node — the precedence relation P. This relation is transitive and
asymmetric (and thus irreflexive). If one node dominates another, neither
one of them precedes the other. Thus a pair of nodes (n,n') can be a
member of P only if neither (n, n’) nor (n’, n) is a member of D.

Arcs in the tree are not allowed to cross. This means that if some
node precedes another node, all nodes that the former dominates precede
the latter, and that the former node precedes all nodes the latter node
dominates. This can be stated formally as

Vn,n',n" P(n,n') A D(n,n") = P(n",n')
and
Vn,n',n"” P(n,n') A D(n',n") = P(n,n")

In addition to this, we will require that for any two distinct nodes n and n’,
they are related either by D or P, i.e., exactly one of the following holds:

D(n,n'), D(n',n), P(n,n") or P(n',n)

A tree has a single root, i.e., there is a unique minimal element w.r.t. D.
If 7 is a tree, then R(7) denotes the root of 7. The maximal elements w.r.t.
D are called the leaves of the tree. These must be ordered by P, and the
ordered sequence of the labels of the leaves is called the yield of the tree.
Y(7) denotes the yield of the tree 7. The non-maximal elements w.r.t. D
are called internal nodes.

4.1.4 Parse Trees

A parse tree (or derivation tree) of any string of terminal symbols w genera-
ted by a context-free grammar G as defined above must obey the following:

e The root of the tree is labelled with the axiom S.

e All leaves of the tree are labelled with elements in V. More specificly,
the yield of the tree must be w.

e All internal nodes are labelled with elements in V.

e If there is a node labelled X in the parse tree that immediately do-
minates nodes nq, ..., ng labelled X1,..., X (where n; precedes n;
for i < j, i.e., P(ni, nj)), then there is a production in G of the form
X—=Xy,..., Xk.

T(G) denotes the set of parse trees generated by the grammar G and is
defined as {7 : Y(7) € L(G)}.

A grammar G is said to be finitely ambiguous iff there is only a finite
number of parse trees for any finite string in L(G), i.e., if

Vw € L(G) |w]<oo— [{r: V(1) =w} <

This is equivalent to requiring that no (nonterminal) symbol can be rewrit-
ten as itself in one or more rewrite step, i.e., that X =% X is impossible.
We will in the following assume that the grammars are finitely ambiguous.
Even so, the number of parse trees in general grows exponetially in the
string length.
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A partial parse tree is a parse tree where we have dropped the require-
ments that the root must be labelled with the axiom S and the leaves must
be labelled with terminals. Partial parse trees can be combined through
tree substitution. We will here define leftmost tree substitution.

Leftmost tree substitution:

Let 7 and 7 be partial parse trees. Let 707’ denote 7 extended
by identifying the leftmost (i.e., minimal w.r.t. P) leaf of 7
labelled with a nonterminal symbol with the root of 7/. The
selected leaf node of 7 is called the substitution site. The label
of the substitution site much match the label of the root of 7'.
The dominance and precedence relations D and P are extended
accordingly. Although the tree-substitution operation is not
associative, let 7o 7' o 7 denote ((7 o 7') o 7).

(Packed parse forests will be defined in a later release.)

4.2 Stochastic Context-free Grammars

The simplest example of how a grammar can be augmented with a pro-
babilistic theory is a stochastic contezt-free grammar (SCFG); we simply
add a probability distribution P on the set of productions R. A stochastic
context-free grammar is thus a quintuple (Vy, Vr, S, R, P) where:

VN is a finite set of nonterminal symbols.

Vr is a finite set of terminal symbols. Again V denotes Viy U V.

S € Vy  is a distinguished start symbol, or axiom.

R is a finite set of productions X — § where X € Vy and g € V*.
P is a function from R to [0, 1] such that:

VX €V ZEEV* PX—=p5)=1
Note the conditioning on the LHS symbol of the production r;. The follo-

wing is a simple example of a SCFG:

S — NPVP (10)
VP — V (0.5)
VP — VPPP (0.5)
NP —  John (1.0)
V. —  sleeps (1.0)
PP —  outside (1.0)

We will define string probabilities in terms of tree probabilities, which
in turn will be defined in terms of derivations probabilities. One could
alternatively define string probabilities dirctly in terms of derivation pro-
babilities.

e The probability of a string is defined as the sum of the probabilities
of the parse trees that have this string as a yield.

e The probability of a parse tree is defined as the probability of the
corresponding leftmost derivation.

Let the leftmost derivation be represented by the sequence of produc-
tions used in each rewrite step, and let the random variable £, be the
production used in rewrite step m. We can thus view a leftmost derivation
as a stochastic process &1,..., &y, see Section 2.1.1, where the set of states
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are the set of productions of the grammar. This allows us to define the
probability of a leftmost derivation recursively:

P(gl :ri11"':€M—1 :TiM—1J€M :riM) =
- P(E:M:riM|€1:ri1:"':€M—1:riM—1)'
P(£1 = ri1a"';£M—1 = riM—l) =

M
= HP(fm:mm|£1:ri1,...,€m_1:mm_1)

m=1

To fully characterize this stochastic process, we need to specify the pro-
babilities P(&m = ri,, | &1 = 7iyy -y €m—1 = 714,,_,) for all possible values
of m =1,...,M and i1,...,in. The independence assumption P(&, =
ri | &1 = 7riyy . €m—1 = 7i,_,) = P(r;,) is characteristic for stochastic
context-free grammars. Here P(r;) is the probability of production r; given
by the stochastic grammar. This means that the probability of rewriting
a nonterminal X with a production in R is independent of the previous
sequence of rewrites. Thus we have

M
P(flzril,...,fMIT‘iM) = HP(TZ'M)
m=1

However mathematically sound, this approach obscures the rather intri-
cate relationship between the sequence of derivation steps and the current
leftmost nonterminal node in the partial parse trees resulting from each
derivation step. Each production X — X;,..., Xg in R corresponds to a
partial parse tree where the root, labelled X, immediately dominates a se-
quence of nodes labelled X1, ..., X, and where there are no other nodes.
Now, let 7,, be the partial parse tree corresponding to 7, in a leftmost
derivation 7y, ...,7a. Then 7 o...0 7y is the parse tree corresponding to
this leftmost derivation.

Consider the sequence of partial parse trees t,, = 7 o...0 7, resulting
from the m first rewrite steps for m = 1,..., M. Note that the final parse
tree is simply the last element tj; of this sequence. It is more natural to
discuss the probability of the resulting parse tree in terms of this sequence
of partial parse trees, rather than in terms of the sequence of rewrite steps,
although they are isomorphic. This yields the following formulation of the
probability of a parse tree 7:

M
P(r) = P(ty) = [] P | tm-1) (4.1)
m=1
tm, = 7 °Tm 1<m<M

tg, =

P(tm|To...otm_1) = P(rm |71, . "m-1)

We will use some extractor function g(t,,) to extract the relevant in-
formation from the partial parse tree t,, when estimating the probabilities
P(Tim+1 | tm). This means that we will only look at the portions of the tree
that we think are relevant for estimating this probability:

P(rey1 [tm) &~ P71 | g(tm)) (4.2)



78 CHAPTER 4. STOCHASTIC GRAMMARS

This means that the set of possible partial parse trees is partitioned into
a set of equivalence classes, each of which is associated with a probabi-
lity distribution over the set of elementary trees that constitute the set of
productions.

For stochastic context-free grammars, the interesting information is the
label of the leftmost nonterminal of the yield of the tree, which is required
to match the LHS of the production used in the next rewrite step. Thus,
the function g(7) is £L(Y(7)), where Y(7) is the yield of 7 and L£(¢) returns
the leftmost nonterminal symbol of the string ¢.

The probabilities assigned to analyses are preserved under transforma-
tion to and from CNF:

e Productions of the foorm A — BCDE (p) with A,B,C,D,E € Vn
are replaced with a set of productions of the form A — BC' (p), C' —
CD' (1.0) and D' — DE (1.0). This introduces new nonterminals
C', D', E' which do not figure elsewhere in the transformed grammar.

e Productions of the form A — B (p;) are removed. (Alternatively
Extended Chomsky Normal Form is employed.) For each production
of the form X — aAf (p2) with o, € V*, a new production
X — aBf (p1 - p2) is introduced.

e Productions of the form A — ¢ (p1), where € is the empty string, are
removed. For each production of the form X — aAf (p2), a new
production X — af (p1 - p2) is introduced.

e Productions of the form X — aaf (p) with a € Vp are replaced with
the production pair X — aA’3 (p) and A’ — a (1.0).

4.3 A Parser for SCFGs

We will next adapt the Viterbi algorithm discussed in Section 2.1.6 to par-
sing with stochastic context-free grammars. This presentation is inspired by
[Wu 1995] and we will use a variant of the Cocke-Younger-Kasami (CYK)
parsing algorithm, see [Aho & Ullman 1972], pp. 314-320. The parser des-
cribed in this section finds the most probable parse (MPP) of a given input
string w in O(N3T3) time and O(NT?) space, where N = |Vy| is the size
of the nonterminal alphabet and T is the string length.

Assume that Vy = {Xi,...,Xn}, where S = X, and that w =
w1, ..., wr. Assume further that the grammar is in Chomsky Normal Form,
see Section 4.1.1. We will maintain an accumulator 8, (X;) for each non-
terminal symbol X; in the grammar and each node n in the tree.

In any parse tree, a node n uniquely determines a substring, which in
turn specifies a pair of string positions (s,t). Let wy; denote wyy1, ..., wy,
and let wg; be the yield of the subtree rooted in n. This function is not
necessarily a surjunction, i.e., there may be string positions that do not
correspond to any node in the parse tree. Nor is it necessarily an injunction,
i.e., several nodes may be mapped to the same pair of string postitions. We
can however define a partial inverse function by choosing the node closest
to the root. Thus 7 is the partial parse tree whose yield is w,; and whose
root node n is minimal w.r.t. D. More formally, Y(7) = wss A R(7) =
n A (V') =wsee AN R(F) =n" — D(n,n')). The nodes that do
not correspond to any pair of string positions will thus be the daughters of
unary productions. For a grammar in CNF, these nodes are the leaves of
the tree, which will not figure directly in the algorithm below.
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We thus have the set of accumulators
boa(Xi) 1<i<N1<s<t<T

These are defined as the maximum probability of any partial parse tree 7
spanning the substring wg; = ws41, ..., w; given that the root of the parse
tree 1s labelled Xj;:

6. +(Xs) = max  P(r|£R(1)) = Xi)

TY(T)=We1

The probability of the most probable parse tree with w = wgp as a yield
is thus

fr(S) = max P(r|(R(r)) = $)

and the parse tree itself is

argmax

T:Y(1) = w

Let p;—jr denote P(X; — X; Xy | X;) and pj— denote P(X; — w | X;).
We can construct this parse tree bottom-up:

P(r | ((R(7)) = S)

1. Initialization
Vi,t:1<i< N, 1<t<T

8i—14(Xi) = Picw,

2. Recursion
Vi,rt:1<i<N,1<r<t<T

o 1(Xi) = max Dijk Or,s(Xj) 05,4 (Xp)
1<j<N
1<k<N
r<s<t
argmax
b1 (X5) 1<%<N
Kt (Xi) = l<k<nyN DPimik 8rs(X;) b5 +(Xk)
ora(Xi) r<s<t
3. Reconstruction
n=(s,1)
Nil ift—s<2
Left(n) = { (s,05:(£(n))) otherwise
. Nil ifr—s<2
Right(n) = { (0s:(€(n)),t) otherwise
ULeft(n)) = ¢5:(8(n))
(Right(n)) = ks:(4(n))

In the initialization step, the probabilities of the lexical productions
are assigned to the nonterminals at the nodes immediately dominating the
input string. In the recursion step, we are interested in calculating

6 1(X;) = max  P(r | {R(7)) = Xi)

TY(T)=Wrt
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from

br,s(Xj)

)

max P(r" | ((R(T)) = X;)

TEY(T)=Wos
and

Bs 1(Xx) = P(r" [ (R(r")) = X¢)

max
TY(T!")=W ey

for all possible intermediate points s in the string w,; and all possible
productions X; — X; Xj. We note that

max  P(r|4R(r)) =X;) =

TY(T)=Wrt
= P(X; X; X | X5) - P(r' ¢ "N =X;)-
max[P(Y — XX | X)) max PG| ARG) = X))

max P(r" | (R(T")) = Xi)]

THY(T!")=W ey

which gives the recursion formula.

The complexity of this probabilistic parsing scheme is O(N37?) in time
and O(NT?) in space. It can easily be generalized to the case of a general
stochastic context-free grammar, not necessarily in Chomsky Normal Form.
(Ref?)

(The relationship between the HMM trellis, the é-variables
and a packed parse forest will be revealed in a later release.)

This section described a probabilistic version of the CYK parsing algo-
rithm. For a very nice presentation of a probabilistic Earley parsing scheme,
we are happy to be able to refer to [Stolcke 1995].

4.4 Parameter Estimation for SCFGs

We now turn to the problem of estimating the production probabilities
Di—jk = P(XZ — X]'Xk | Xz) and Pi—ww = P(XZ — w | Xz) of a SCFG. If
we have access to an annotated corpus of parse trees, we can calculate these
probabilities directly from the observed relative frequencies. It is however
in this case necessary to deal appropriately with the problem of sparse data,
as discussed in Section 2.4.

If we only have a corpus of unannotated text, we have to resort to other
methods. Here we will define a set of recurrence equations that can be used
to iteratively improve our estimates of these probabilities. By doing this
right, we can get some guarantees that each iteration will yield us a better
set of estimates.

One method is to first find all vaild parse trees for each sentence in
the corpus. In the first iteration step, we assign a uniform distribution to
the set of parse trees resulting from each sentence. We then perform a fre-
quency count of the productions, conditioned on the LHS symbol, each time
weighting with the probability of the parse tree. This will determine a new
probability distribution for the productions. Using this, we can estimate
a new probabilities for the parse trees conditional on the corresponding
sentence. This in turn allows us to estimate the production probabilities
from the frequency counts conditioned on the LHS symbol, again weighting
with the previous estimate of the probability of the parse tree. This in turn
determines a new estimate of the tree probabilities, and we can iterate this
procedure until we tire.
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A problem with this method is that the number of possible parse trees
of an input string is exponential in the string length. Another method for
reestimating the production probabilities that avoids this problem is called
the inside-outside algorithm. The basic idea of the inside-outside algorithm
is to use the current estimates of the production probabilities to estimate
from the training corpus the expected frequencies of certain other derived
quantities that depend on the production probabilities, and then recompute
new estimates of the production probability using these derived quantities.
The goal is to find a set of production probabilities that (locally) maximizes
the likelihood of generating the training corpus.

4.4.1 The Inside and Outside Variables

We will use two sets of accumulators, namely the inside probabilities and
the outside probabilities: !

e The inside probability I¥(s,t) estimates the probability
P(X; =" we | X5)
of a given nonterminal X; deriving the substring ws: = w1, ..., we.
e The outside probability O¥(s,?) estimates the probability
P(S =" wos Xswir | S)

of deriving the string wo; X;wir = wq, ..., ws X;weg1, ..., wp from
the axiom S. We will in the following omit the conditioning on S to
aid readability.

Nice figure needed here!

We have the following relationships between the inside, outside and
production probabilities:

1. Inside-variable initialization
Vi,t:1<i< N, 1<t<T

I;U(t - 1at) = Disw,

2. Inside-variable recursion
Vi,rt:1<i<N,1<r<t<T

N
IF(rt) = Z Z pi—*jk'j;u(ﬁs)'jlccu(s’t)
Jk=1r<s<t

3. Outside-variable recursion
Vi,rt:1<i<N,1<r<t<T

N r—1
0 = S om0 Tt +
i k=1 5=0
T
+ Z pj—ik - OF (r,s) - Iy (t, 5)
s=t+1

1In an extension to this scheme, Larson introduces the so-called far-side probabilities.
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Comparing this with the parsing algorithm of the previous section, we see
that the only difference between the 6, ;(¢) and I} (r,t) accumulators, apart
from the fact that the argument and subscripts have been swapped, is
that the latter are summed in the recursion step, whereas the former are
maximized, in both cases over the same set of quantities.

The recursion formula for the inside variables follows from

N
P(Xi =" wee | Xi) = )0 P(Xi = XjXp =27 wee | Xi) =
k=1

N
S P(Xi= X Xp | Xi) - P(X =7 wes | Xj) - P(Xk =" W | Xa)
Jk=1r<s<t

The recursion formula for the outside variables follows from

P(S =" WOTXZ'WtT) =
N r—1
Z ZP(S =% wo, Xjwer =7 Wo, Xp XsWir =" Wo W Xywyr) +
k=1 s=0
T
+ Z P(S =" WOerWsT =" Wor X; Xp Wy =" WOrXthsWsT) =
s=t+1

e

N r—1
> D P(S =" wo, Xjwir)  P(Xj = Xp X | Xj) - P(Xp =7 we, | Xp) +
k=1 s=0
T
+ Y P(S="wo Xjwar) - P(X; = XiXe | Xj) - P(Xx =" wis | Xi)
s=t+1

Ve

We see that the complexity is O(N3T3) for calculating both all inside
variables and all outside variables.

4.4.2 Deriving the Reestimation Equations

P(X; P(X; — X; X
The basic idea is to estimate p;_.,, from w and p;_.; from M:
P(Xi) P(Xi)
. P(X; —
Piew = P(Xi—wl|X;) = w
P(X;)
) R P(X; — X; X
Pi—jr = P(Xi— X;Xp | Xy) = PO = X Xe)

P(X;)

We will thus need the quantities p(XZ-), P(XZ — w) and P(XZ — X; Xp).

Deriving P(X;)

The string probability P(w) is the probability of deriving w from the axiom
S = Xli

PY = P(w)= P(S=*w)=I¢(0,T)

The joint probability of deriving w and the nonterminal X; figuring (at
least once) in some derivation of w is

Py = P(S =" ¢1X¢¢2 =" w) =

K3
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Z P(S =" wo, X;wsr =" w) =
0<r<s<T

Z P(S =" wor Xiwer) - P(X; =7 wps | Xi) =
0<r<s<T

= Z Of (r,s) - I (r, s)

0<r<s<T

So the probability P(X;) of X; figuring in some derivation (of any string)
can be estimated by normalizing with the string probability P“ and avera-
ging this quantity over the corpus W:

. 1 w
P(X; = — L
) = T 2 P

where |WV| is the corpus size, i.e., the number of sentences. The complexity
of calculating this is E O(N - T2).
weW

Deriving P(X; — w)
Likewise, the joint probability of deriving w and the (lexical) production
X; — w figuring in some derivation of w is

P(S =" 01 Xid2 = drwos =" w) =

= Z P(S =" Wor_1X; W =" (.d) =
1<t<T wi=w

= Y P(S="wei Xiwer) - P(Xi =% w | Xi) =
1<t<T wi=w
= Y 08t —1,t) piw
1<t<T wi=w
The probability P(X; — w) of applying the production X; — w in some
derivation can similarily be estimated by
> 08t —1,1) picew

1 1<t<T,wi=w
P(Xi—w) = ) P
weW

The complexity of calculating this is E O(N - T,) if the lexical entries
weW

can be accessed in constant time.
Deriving P(XZ — X; Xy)

Finally, the joint probability of deriving w and the production X; — X; X
figuring in some derivation of w is
P(S =" 01Xi¢2 = 61X X2 =7 w) =
= Z P(S =" wo, Xiwyr = wo, X; Xpwyr =% w) =
0<r<t<T
Y P(S=" woXiwir)  P(X; — XX | X5) -
0<r<s<t<T
“P(X; =" wps | Xj) P(Xp =" wey | X)) =
E 07 (1, 1) pimjr - I;u(r: s) - Iy (s,t)

0<r<s<t<T
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Analogously, the probability P(X; — X;X}) of applying the production
X; — X; X} in some derivation can be estimated by

Z O (r,t) - pi—jr - 17 (r,5) - I (s, 1)

2 1 0<r<s<t<T
P(X; — X;Xy) = i 3
weW

Pw

The complexity of calculating this is Z O(N?.T3).
weW

The Reestimation Equations

Assembling all this will yield us the final set of recurrence equations for the
probabilities p;_.,, and p;_. ;i just as in the case of estimating the model
parameters of an HMM, cp. Section 2.1.7:

Piw = POGi—w|x) = 259
P(X;)
S 08(n8) pica

1<t<T \wi=w
2 o

weW
W
>
Pw
weW

) ) P(X; — X; X
Pi—ijk = P(XZ-—>X]'X]€|XZ') = M =

P(X;)
E OF (r,t) - pi—ji - I} (v, 5) - Iy (5,1)
Z 0<r<s<t<T
Pw
weWw
_ >
Pw
weWw

Each iteration step requires Z O(NBT:;’) calculations, which is clearly
weW
polynomial in corpus size.
The method is extended to general context-free grammars, not necessa-
rily in Chomsky Normal Form, in [Kupiec 1992] and to partially bracketed
training text in [Pereira & Schabes 1992]

As we have seen, the string probability P(S =* w) = I¥(0,T) can also
be calculated in O(N37T?) time and O(NT?) space. Unfortunately, finding
the most probable sentence (MPS) of a word graph, which is the normal
output from a speech recognizer, is NP hard in string length, see [Sima’an

1996].

4.5 Adding Probabilistic Context to SCFGs

Consider the following SCFG
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S — NPVP  (0.70)

VP — VNPNP (0.10)

NP —  Pron (0.20)
NP — DetN  (0.20)
NP — NPPP  (0.30)

It will assign

“(Show) (me) (all fligths to Boston from Atlanta leaving before
ten AM that serve breakfast and stop over in Baltimore ...)”

the same probability as

“(Show) (all fligths to Boston from Atlanta leaving before ten
AM that serve breakfast and stop over in Baltimore ...) (me)”

So instead of
P(NP — Pron | NP)
it would be better to use
P(NP — Pron| VP— YV - NP NP)

Likewise, the stochastic model as it stands is too blunt to be of any use
when disambiguating for example noun-noun compounds.

It is, theoretically, very simple to add more contextual information to
the probability distributions by looking further up the tree at the substi-
tution site. Assume for convenience that the grammar is in CNF. To take
not only the LHS label into account, but the entire mother dotted item:

e Replace each occurrence of a RHS nonterminal with a new unique
nonterminal.

e Multiply out the rules by creating a new rule for each matching old

LHS.

This creates a new SCFG G that effectively yields the probabilities of the
old productions of grammar GGy conditional on the mother production and
the expanded nonterminal of its RHS. This can be repeated ad infinum to
yield stochastic models G, with increasingly more contextual information.
Note again the similarity to HMMs, this time how Nth-order HMMs can
be represented as first-order HMMs by expanding out sequences of states
into distinct new states.

The number of nonterminals |G1| in the new grammar G; equals the
number of distinct occurrences of nonterminals in the RHSs of the produc-
tions of the original grammar Gg, which is exactly 2|Rg|, two times the
number of original productions. This is maximally 2N3, where N = |G|
is the number of nonterminals in Gy. Thus, the most probable parse can
be found in O(N°T3) time and O(N3T?) space. The algorithm is thus still
polynomial both in N and 7.
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In the general case, the parsing complexity is O(N®?+373) in time and
O(N?P*T1T2) in space for p generalization steps. The two key general rec-
curence equations are:

|Gp+1| = 2|R;n|
[Rpt1| < 2N?|R,| < (2N?)P|Ro|

The first equality can be established as follows: Each RHS occurrence in
the grammar G, of the previous step yields a new symbol in the resulting
grammar Gpyi. This is simply the number of rules in the previous step,
|R,|, times two.

For the following inequalities, we first observe that the number of pro-
ductions in Gp41 that each production in G, gives rise to equals the number
of occurrences of the particular LHS symbol in the RHSs of the productions
of Gp.

Assume that no symbol occurs more than B times in the RHSs of G,,.
Then this is true also for G,41. We establish this claim as follows: When we
construct Gp41 from G, we replace each occurrence of a grammar symbol
in the RHSs of the productions with a new symbol. This means that before
LHS expansion, each RHS occurrence is a unique symbol. The number
of occurences of any symbol will thus be the number of times the RHS
containing it is duplicated by LHS expansion. We need exactly one version
of each production for each occurence of the LHS symbol in a RHS of G,.
But this is bounded by B.

So if there is an upper bound B to the number of occurences of any
grammar symbol in Gy, this upper bound is valid also for G, : p=1,2...
by induction. So each production in G, is expanded into maximally B
productions in Gp41. No symbol can occur more than 2N? times in the
RHSs of Gg, so B = 2N? yields the inequalities.

Starting with a maximally dense grammar Gy we have |Rg| = N3. We
thus have |G,| = 2P N??=2N3 = 2P N?P*1_ This means that the parsing
complexity is O(|G,[*T?) in time and O(|G,|1?) in space, which establishes
the claim. Note however that the complexity is exponential in the number
of generalization steps.

4.6 Theoretical Probability Losses

A somewhat surprising fact is that the string probabilities assigned by an
SCFG do not necessarily sum to one over the set of finite strings. The reason
for this is that each string probability is defined as the sum of the derivation
probabilities of the string. Now, the SCFG will assign probabilities also to
nonterminating derivations. For example, the probability of a terminating
derivation is zero in the following SCFG

S—aS (1)

since there are none.

This is in some sense a degenerate case, since the probability of the one
nonterminating derivation S = aS = aaS... is nonzero. But even for
grammars where the probability of each nonterminating derivation is zero,
the sum of these probabilities need not be, as in the following case:
Proposition

Consider the SCFG
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S—a (p)
§—55 (g
where p,g > Oand p+¢q = 1.
Then
Z P(a") = min <1, B)
n=1 q
Proof

The total number of nonterminal nodes in any parse tree for a” is 2n — 1.
There are n preterminal nodes, i.e., S rewritten using S — & and thus
n — 1 Ss that are rewritten using S — SS. This means that the string
probability of a” is p” - ¢"~! times the number of different parse trees for
a™. The number of different parse trees equals the number of different
binary bracketings of a string with n terminals. The recurrence equation is

With initial value f(1) = 1, the solution is the sequence of Catalan numbers

2n—2
n—1
n

Thus, the string probability of a™ is
P(a") = f(n)-p" ¢"""

and the sum of the string probabilities is

z o= Y P@’) = > f)-pt¢"t = p Y fn) Tt = pog(r)

wherer = p-q = p-(1—-p) = (1—9¢q) ¢
From the grammar we can establish that
¢ = ptq-a
with solutions
1
xr = }_?
q
and thus
1
gy = ¢ 1
p
Let y be defined by
1
g(r) = -
(r) "
ro=y-(1-y) 20
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Then

9(0) = Elirgl+;f(n) = f(1) =1
andthusforallrzogrgi
1 1 1 1
vo= gtyzor = gty vty =
= %Jr (%—y)2 = %Jr‘%—y‘ = max(l—y,y) = max(p,q)

and thus

In the general case, let C = ¢; be the vector of the probability of each
nonterminal X; not terminating. Let A be the matrix of the quantities

aj = Y P(Ri|Xi)- ny(Ry)

where n;(R) is the number of times the symbol X; occurs in the RHS of
R.

Then C' < AC and for any ¢; to be non-zero, ie., ¢ > 0, we see
by diagonalizing with 7" that in order for C' < AC to be true, we need
TC < TAT~ITC, which in turn means that for some eigenvalue A\, of A =
TAT~! wemust have Ay > 1. Some nice spectral theorem guarantees that,
under suitable conditions, such a matrix 7" exists, and that the eigenvalues
of A are the same as those of TAT~!. Using a continuity argument on ¢;
as functions of the model parameters P(Ry | X;), we find that a non-zero
¢; requires an eigenvalue greater than one.

In the example above, A = [2¢], and the requirement is 2¢ > 1, or
.

Check out: Wetherell 1980, Booth and Thompson 1973, Fu’s “Syntactic
Pattern Recognition”.

4.7 Stochastic Tree-Substitution Grammars

We will consider another way in which a context-free grammar can be
augmented with a probabilistic theory. Reconsider the definition of the
probability of a leftmost derivation, Eq. (4.1). Assume that we allow the
set of elementary parse trees used here to consist of trees of depth greater
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than one. We will thus replace the set of trees corresponding to the set of
productions R with a more general set of elementary trees. Let us further
assume that the extractor function g(7) of Eq. 4.2 is the same as for SCFGs,
i.e., L(Y(r)). This means that the probability of an elementary tree being
substituted at the leftmost nonterminal leaf is conditional only on the label
of this node.

Since we are working with a general set of elementary trees, we must take
into account that we no longer have a one-to-one correspondence between
leftmost derivations and parse trees — Now there may exist several leftmost
derivations of a parse tree. In order to get the probability of a parse tree, we
will sum over the set of possible leftmost derivations of it. The probability
of a string will still be the sum of the probabilities of the parse trees that
have this string as a yield.

A stochastic tree-substitution grammar (STSG) thus consists of a quin-

tuple (Vn, Vr, S, R, P) where

VN is a finite set of nonterminal symbols.

Vr is a finite set of terminal symbols. As usual, V = Vy U Vp.

S € Vy  is a distinguished start symbol, or axiom.

R is a finite set of partial parse trees, so-called elementary trees.
p is a function from R to [0, 1] such that:

VX EVN Yrumrey=x P(T)=1

For these grammars, finding the most probable parse (MPP) is NP hard,
[Sima’an 1996]. One can however find the most probable derivation (MPD)
in O(N3|R|), time see [Sima’an 1995]. This is done by first using a CYK
parser to construct a packed parse forest from the underlying CFG, and
then performing Viterbi search, with a few clever optimizations, on the re-
sulting packed parse forest, now taking the probabilities of the STSG into
account. Similar techniques allow using Monte-Carlo techniques to estimate
the MPP by sampling from the set of derivations, see [Bod 1995b].

For a nice description of STSGs and a related paradigm referred to as
data-oriented parsing (DOP), originally due to Remko Scha, see [Bod 1995a]
and [Bod 1995b]. Tree-substitution grammars are a special case of tree-
adjoining grammars, see [Joshi et al 1975). In addition to tree substitution,
the latter also allow the adjoining operation. Stochastic lexicalized tree-
adjoining grammars are described in [Schabes 1992].

(To be continued.)

4.8 Stochastic History-Based Grammars

Again, reconsider the definition of the probability of a leftmost derivation,
Eq. (4.1). Assume that we in Eq. 4.2 instead use a more general extractor
function g(7) than £(Y(7)), the one used for SCFGs and STSG. The typical
type of function g(7) will be a decision tree, which is used to arrive at a
probability distribution by asking a sequence of questions about the parse
tree T, or equivalently, the about sequence of derivation steps in the leftmost
derivation, see [Black et al 1993]. The decision-tree techniques are described
in [Bahl et ol 1989], which is well worth reading.

We realize that we can in general view any derivation of a parse tree
as a sequence of disambiguation decisions, and that we can define the de-
rivation probability based on the decision history. If there is a ono-to-one
correspondence between the derivation and the restulting parse tree, we can
use this to define the parse probability. We can again use a decision tree
to “ask 20 (binary) questions” about the derivation history, i.e., about the
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previous disambiguation decisions made, and thus determine a probability
distribution on the set of disambiguation actions currently available.

This is exactly what is done in the work reported in [Magerman 1995],
one of the most important, and most readable, articles on probabilistic par-
sing to date. One of the nice characteristics of the scheme is that it allows
lexical information to be used for structural disambiguation. Due to the
complex conditionings of the probabilistic language model, it uses a disam-
biguation scheme distinct from Viterbi search: It first finds a reasonably
high-probability complete parse, and then switches to breadth-first search,
pruning search branches with an accumulated probability below that of the
complete parse found.

(To be continued.)

4.9 Lexicalization of Stochastic Grammars

Lexicalization of stochastic grammars has become a major research topic.
For the time being, approaches modeling a combination of phrase structure
and lexical dependency structure show the best results, cf. [Eisner 1996]
and [Collins 1997]. There are other approaches like stochastic lexicalized
tree adjoining grammar ([Schabes 1992]), and history-based grammar using
lexical information in the derivation history ([Black et al 1993], [Magerman
1995]).

An early arpproach on stochastic dependency grammar is probabilistic
Link Grammar ([Lafferty et al. 1992]), a grammar that models n-gram
lexical dependencies. An examole for a more recent approach on n-gram
lexical dependencies is presented in [Collins 1996].

4.9.1 Stochastic Dependency Grammar and Related
Approaches

In classical dependency grammar [Tesniére 1959)], syntactic structure is
determined on the basis of dependency (head-modifier) relations between
words. Sentences and phrases are thus represented by the set of dependency
relations that hold between their lexical elements.

Dependency structures can be derived from context-free grammars by
mapping trees into dependency structures. This is an advantage as the sta-
tistics already well known from stochastic context-free grammar can also
be applied to dependency-based approaches. In order to map trees into
dependency structures a head-daughter is defined for each phrase and its
lexical head is perculated up the tree. The other daughters of the phrase
are considered as modifiers. Accordingly a dependency relation for each
head-modifier pair can be defined, for example by a triple representing the
modifier non-terminal, the mother non-terminal and the head non-terminal.
< NP,S,VP >, for instance, expresses a subject-verb dependency, cf. [Col-
lins 1996]. For illustration, we present three recent approaches in more
detail.

A Model for Bigram Lexical Dependencies

The probability of a parse tree 7' given a particular word string S is de-
fined by the probability of the set of head words of NPs B (called base
NPs in [Collins 1996]) conditioned on S, and the probability of the set of
dependencies D given S and B, cf. [Collins 1996]. It is
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P(T|S) = P(B|S) * P(D|B, S)

P(D|B, S) is defined by the conditional probabilities of all binary modifer-
head relations given S and B. The set D of links from a modifier to a head
is defined by the product of the Maximum Likelihood estimates of the syn-
tactic relations R; that hold between the modifer word-tag pairs < wj,?; >
and the head word-tag pairs < wp;,ts; > in S. As an extra condition, a
distance measure dj n; between a modifier and its head is added. The di-
stance measure is based on information like the number of words and the
syntactic category of phrases between the head and its modifier. We have

P(DlS, B) = H F(Rj| < wj,t; >, < wh,, T, >:dj,hj)

i=1

Two Generative Models

Another possibility to represent the dependency structure of a sentence is
to generate for each word 7 in a sentence the sequence of its right and left
children, cf. [Eisner 1996], [Collins 1997].

In [Eisner 1996] for each word-tag pair tw(i) of a sentence the sequence
of left and right children (left_kids(i), right_kids(7)) is generated. The pro-
bability that a child is generated is conditioned on the tag of the previously
generated left child of i (kid.41) or the previously generated right child of
i (kid.—1) and the word-tag pair tw(i) itself. The formula that generates
the sequence of right children is given below.

n 1+#right_kids(i)
P(T,8) =]] 11 P(tw(kid.(i))[tag(kid._1(3)), tw(i)
i=1 \e=—(14+#left_kids(i)),c#£0

A linguistically more refined model is presented in [Collins 1997]. In
addition to the lexical head, information on the argument structure defined
by the head is given. The probability of a parse tree T" for a sentence S is
defined by the product of the probabilities of its productions. Productions
are defined by the conditional probability of the right-hand sides RHS;
given the left-hand sides LHS;. Thus we have

P(T,S) = ﬁ P(RHS;|LHS;)

i=1

Right-hand sides are further decomposed into the probability Py that
a head category H is generated conditioned on a parent category P and a
head word h, and the probabilities of the left and right contexts of H(h)
under P. The contexts are defined by the probabilities of the left and right
constituents (P, P.), and the probability of the left and right complements
(Prc, Pre). Constituents are calculated from the probability of the head
category (L; or R;) and the probability of the head word (I; or r;) con-
ditioned on the parent category P, the parent’s head category H and the
head word h, as well as a distance measure d between the head and the
edge of the context constituent, and a set representing the left or the right
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arguments (LC, LR) of H(h). The probability of left and right arguments
is conditioned by P, H and h. Thus we have the following formula:

n
H Py (H|P,h)*P(L;,1;|P,H, h,dr, LC)*Pr(R;, 7;|P,H, h,dr, RC)*Prc(LC|P, H,h)*Prc (RC|P,H, L)

=1

4.10 Probabilistic LR Parsing

In Section 4.2, we defined the parse probability of any stochastic extension
of a CFG as the probability of its leftmost derivation.? Conceptually, the
stochastic version of CFG was viewed as a top-down process, accentuated
by the fact that the conditioning of the production probabilities is on their
LHS. In contrast to this, the parser for SCFG described in Section 4.3
worked in a bottom-up fashion. We could equally well instead define the
parse probability as that of the rightmost derivation, and then specify this
sequence backwards. Thisis exactly what an LR parser does — it constructs
the rightmost derivation in reverse. In fact, this is what the “R” in “LR”
stands for. The “L” stands for left-to-right scanning of the input string.

4.10.1 Basic LR Parsing

An LR parser is a type of shift-reduce parser that was originally devised for
programming languages, [Knuth 1965], and is well described in e.g. [Aho
et al 1986]. Various aspects of it relevant to natural-language parsing are
descussed in [Tomita (ed.) 1991]. The success of LR parsing lies in handling
a number of production rules simultaneously by the use of prefix merging,
rather than attempting one rule at a time.

An LR parser is basically a pushdown automaton, i.e., it has a pushdown
stack in addition to a finite set of internal states and a reader head for
scanning the input string from left to right one symbol at a time. The
stack 1s used in a characteristic way: The items on the stack consist of
alternating grammar symbols and states. The current state is simply the
state on top of the stack. The most distinguishing feature of an LR parser
is however the form of the transition relation — the action and goto tables.
A non-deterministic LR parser can in each step perform one of four basic
actions. In state S with lookahead symbol® Sym it can:

1. accept(S,Sym): Halt and signal success.
2. error(S,Sym): Fail and backtrack.

3. shift(S,Sym,S2): Consume the input symbol Sym, push it onto the
stack, and transit to state S2 by pushing it onto the stack.

4. reduce(S,Sym,R): Pop off two items from the stack for each phrase
in the RHS of grammar rule R, inspect the stack for the old state S1
now on top of the stack, push the LHS of rule R onto the stack, and
transit to state S2 determined by goto(S1,LHS,S2) by pushing S2
onto the stack.

2If the leftmost derivation was not unique, as in Section 4.7, we defined it as the sum
of the probabilities of the leftmost derivations.

3The lookahead symbol is the next symbol in the input string i.e. the symbol under
the reader head.
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S — NPVP (1)
VP — v (2)
VP — VNP (3)
VP — VNPNP (4)
VP — VPPP (5
NP — DN  (6)
NP —  Pron (7)
NP — NPPP (8
PP — Prep NP (9)

Figure 4.1: Sample Grammar

Prefix merging is accomplished by each internal state corresponding to
a set of partially processed grammar rules; so-called “dotted items” contai-
ning a dot (-) to mark the current position. For example, if the grammar
contains the following three rules,

VP — V
VP — V NP
VP — V NP NP

there will be a state containing the dotted items

VP — V.
VP — V.NP
VP — V.NPNP

This state corresponds to just having found a verb (V). Which of the three
rules to apply in the end will be determined by the rest of the input string;
at this point no commitment has been made to any of them.

4.10.2 LR-Parsed Example

The example grammar of Figure 4.1 will generate the internal states
of Figure 4.2. These in turn give rise to the parsing tables of Figure 4.3.
The entry “s2” in the action table, for example, should be interpreted as
“shift the lookahead symbol onto the stack and transit to State 2”. The
action entry “r7” should be interpreted as “reduce by Rule 77. The goto
entries simply indicate what state to transit to once a phrase of that type
has been constructed. Note the two possibilities in States 11, 12 and 13 for
lookahead symbol preposition, “Prep”, both of which must be tried. We
can either shift it onto the stack or perform a reduction. This is called a
shift-reduce conflict and is the source to the ambiguity in the sentence John
sees a man with a telescope.

Using these tables we can parse the sentence John reads a book as fol-
lows:
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State 0 State 5
S’ = -5 S = NP VP.
S = -NPVP VP = VP.PP NP :ft“t%ItON.
NP = - DetN PP = . Prep NP ¢
NP = - Pron
NP = .NPPP State 6 State 11
VP = V. vP = V NP.
State 1 VP = V.NP 6 - e
S = NP.-VP VP = V.NPNP NP = . DetN
NP = NP.PP NP = - DetN N
NP = - Pron
VP = .V NP = - Pron NP = .NPPP
vP = . VNP NP = . NPPP PP = . Prep NP
VP = . VNPNP rep
vP = . VPPP State 7 State 12
PP = . Prep NP NP = NP PP- VP = VNPNP.
State 2 State 8 g]]j z .N]];r.e Pﬁp
NP = Det-N PP = Prep- NP b
State 3 %]]j z . I,if(an State 13
’ PP =  Prep NP.
NP = Pron- NP = . NPPP NP = Nppp
State 4 State 9 PP = - Prep NP
s = S VP = VPPP.
Figure 4.2: The resulting internal states
State Action Goto
Det N NP Prep Pron V eos | NP PP S VP
0 s2 sl s3 1 4
1 s8 s6 7 5
2 s10
3 r7 r7 r7 r7 7 7
4 acc
5 s8 rl 9
6 s2 sll 12 s3 r2 11
7 r8 r8 r8 r8 r8 8
8 s2 s13 s3 13
9 rb rb
10 r6 r6 r6 r6 r6 6
11 s2 s12  s8/r3 s3 r3 |12 7
12 s8/r4 r4 7
13 r9 r9  s8/r9 19 9 19 7

Figure 4.3: The corresponding LR parsing tables
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Action Stack String

init [0] John reads a book
sl [1, NP, 0] reads a book

s6 [6,V, 1, NP, 0] a book

82 [2, Det, 6, V, 1, NP, 0] book

s10 [10, N, 2, Det, 6 V,1,NP, 0] ¢

16 [L1, NP, 6, V, 1, NP, 0] ¢

r3 [5, VP, 1, NP, 0] ¢

rl [4,S, 0] €

accept  [4, S ] €

Initially State 0 is pushed onto the empty stack. The noun phrase (NP)
corresponding to the word “John” is shifted onto the stack and the par-
ser transits to State 1 by pushing it onto the stack. Next, the verb (V)
corresponding to the word “reads” is shifted onto the stack and the parser
transits to State 6 by pushing it onto the stack. Then the determiner (Det)
corresponding to the word “a” is shifted onto the stack and the parser tran-
sits to State 2. The noun (N) corresponding to the word “book” is shifted
onto the stack and the parser transits to State 10. At this point, the noun
and the determiner on top of the stack are reduced to a noun phrase using
Rule 6 (NP — Det N) by popping State 10, the noun, State 2 and the
determiner from the stack. The noun phrase is then pushed onto the stack,
and the parser transits to State 11 by pushing it onto the stack. Next, the
noun phrase and the verb on top of the stack are reduced to a verb phrase
(VP) using Rule 3 (VP — V NP), which is pushed onto the stack, and the
parser transits to State 5. Then the verb phrase and the noun phrase on
top of the stack are reduced to a sentence (S) using Rule 1 (S — NP VP),
which is pushed onto the stack, and the parser transits to State 4. Finally,
the input string is accepted.

4.10.3 LR-Table Compilation

Compiling LR parsing tables consists of constructing the internal states
(i.e. sets of dotted items) and from these deriving the shift, reduce, accept
and goto entries of the transition relation.

New states can be induced from previous ones; given a state S1, another
state S2 reachable from it by goto(S1,Sym,S2) (or shift(S1,Sym,S2) if
Sym is a terminal symbol) can be constructed as follows:

1. Select all items in state S1 where a particular symbol Sym follows
immediately after the dot and move the dot to after this symbol.
This yields the kernel items of state S2.

2. Construct the non-kernel closure by repeatedly adding a so-called
non-kernel item (with the dot at the beginning of the RHS) for each
grammar rule whose LHS matches a symbol following the dot of some
item in S2.

For example State 1 of Figure 4.2 can be constructed from State 0 by
advancing the dot of the items S — - NP VP and NP — - NP PP to form
the items S — NP - VP and NP — NP - PP which constitute the kernel
of State 1. The remaining non-kernel items are generated by the grammar
rules for VPs and PPs (the categories following the dots in the new kernel
items), namely Rules 2, 3, 4, 5 and 9.
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Using this method, the set of all parsing states can be induced from an
initial state whose single kernel item has the top symbol of the grammar
preceded by the dot as its RHS. In Figure 4.2 this is the item S’ — - S of
State 0.

The shift, goto and accept entries fall out automatically from this pro-
cedure. Any dotted item where the dot is at the end of the RHS gives
rise to a reduction by the corresponding grammar rule. Thus it remains to
determine the lookahead symbols of the reduce entries.

In Simple LR (SLR) the lookahead is any terminal symbol that can
follow immediately after a symbol of the same type as the LHS of the rule.
In LookAhead LR (LALR) it is any terminal symbol that can immediately
follow the LHS given that it was constructed using this rule in this state.
In general, LALR gives considerably fewer reduce entries than SLR, and
thus results in faster parsing.

4.10.4 Generalized LR Parsing

Generalized LR (GLR) parsing extends basic LR parsing with two con-
cepts; a graph-structured stack (GSS) and a packed parse forest ([Tomita
(ed.) 1991]). It also differs in being a breadth first, accumulative search,
synchronizing on shift actions, rather than a depth-first backtracking algo-
rithm. Conceptually, a GLR parser works as follows:

1. Shift the next input symbol onto the stack(s). Don’t keep the old
stack(s), only the new one(s).

2. Perform all possible reduce actions on the stack(s). This will give rise
to a new stack for each reduction. Keep the old stacks (before the
reductions). Repeatedly perform all possible reduce actions on the
new set of stacks, accumulating new stacks, until no further reduce
actions are possible.

3. Goto 1.

A graph-structured stack is used instead of a set stacks. This means that
the new portions of the GSS constructed by shifting in Step 1 are merged
with the stack portions resulting from subsequent (repeated) reductions in
Step 2.

After a shift action, two stack portions are merged if the new top states
are equal. If we perform a reduction and the corresponding goto entry would
imply creating a stack continuation that already exists, we simply use the
existing one. The two partial parse trees corresponding to the two merged
LHS symbols will then dominate the same substring, but be structually
different: Since all surviving stack portions will have just shifted the word
prior to the current string position (and possibly have been subjected to
subsequent reductions), the dominted string will end at the the current
string position. Since the same node was reached by the reduction prior
to pushing the LHS symbol onto the GSS, the dominated string will begin
at the same string position. Since the action seqeunces producing the two
derivations are different, the partial parse trees will also be different.

The partial parse trees associated with any nonterminal symbol will
however not be recoverable from the GSS. For this reason, we will store the
structure of each partial parse tree associated with each node in the GSS
in a parse forest. By doing this in a clever way, we can avoid multiplying
out the potentially exponentially many different parse trees that can be
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associated with the parsed word string — This is where the packed parse
forest enters into the story.

The LHS symbol of any reduction is constructed from a sequence of RHS
symbols, each associated with a (set of) partial parse tree(s). The latter
will be recorded in the packed parse forest, and the only information we
need to specify for the node of the packed parse forest associated with the
LHS of a reduciton is the set of nodes in the packed parse forest associated
with the RHS symbols. This means that the internal structure of each RHS
symbol is encapsulated in its node in the packed parse forest. So, regardless
of in how many different ways these RHS symbols can in turn have been
constructed, this ambiguity is contained locally at the corresponding nodes
of the packed parse forest, and not multiplied out at the node corresponding
to the current LHS of the production. This is known as local ambiguity
packing.

In the case of a normal CFG parsing algorithm, we need one node for
each nonterminal symbol and each string position, see 4.1.4. Here we need
one for each node that ever figured in the graph-structured stack. (John
Carroll writes one for each internal state.)

4.10.5 Adding Probabilities

As pointed out above, we can calculate the parse probability P(7) from the
probability of the sequence of productions used in the rightmost derivation
of the parse viewed in reverse order. This gives us the very same recurrence
equation as when using the sequence of productions used in the leftmost
derivation, but the interpretation is now somewhat different:

P(r) = P& =7y, &m—1=Tip_ € =Tip) =
M
= HP(gm:rim|£1:ri1:"'7€m—1:rim_1)
m=1

Since there is a one-to-one correspondence between this sequence and the
sequence of actions of the LR parser, we can equally well use the action
sequence to specify the rightmost derivation in reverse, and thus the parse:

P(r) = P& =ai,....¢cc1=a4,_,, &L =a;,) =

=~

— P(gl:aiz|€1:ai1:"~a€l—1:ail—1)
1

Here a; is the lth action performed by the LR parser.

We will approximate the action probabilities conditional on the previous
action sequence, P(& = a;, | &1 = a4,,...,&-1 = a;,_,), with the action
probabilities conditional on the parsing state Sk, after [ — 1 actions, just
prior to the lth action, and further approximate these probabilities by using
an extractor function g(S) to select relevant portions of the parsing states:

P& =ayl&i=ai,.. . Goa=a,_,) ~ P& =a;|g(%))

For example, this function might select the current internal state and the
current lookahead symbol, and discard the rest of the stack content, and
the remaining input string. The main point is that during parsing, these
approximations can be determined locally, and thus multiplied together:

P(r) ~ [P =alg(Sk)
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This effectively constructs equivalence classes for the various histories of
action sequences.

Let us return to the parse tables of 4.3. We will here assign a probabi-
lity distribution to each pair of state and lookahead symbol over the set of
possible actions. As we see, the only situations where we have nondeter-
minism in the parsing tables are in States 11,12 and 13 with a preposition
as a lookahead. In State 11, for example, we have the shift-reduce conflict
$8/r3, which corresponds to a potential PP-attachment ambiguity in the
input string. We will here assign some probability p1; to s8 and 1 — py;
to r3 in State 11 with lookahead symbol preposition. Similarly, we assign
p12 to s8 and 1 — pys to r4 in State 12, and pi3 to s8 and 1 — p13 to 9 in
State 13, in both cases with lookahead symbol preposition. The rest of the
actions are uniquely determined by the state and lookahead symbol and
thus have probability 1.

4.10.6 Probabilistic GLR Parsing

One way of doing probabilitisc LR parsing is to first construct a packed
parse forest by normal GLR parsing, but in the process attribute a proba-
bility to each different local decision made at each node. These probabilities
are calculated as the product of the action sequences required to construct
the mother symbol from its daughter symbols. However, the probabilities
of the latter have not yet been propagated to the former to determine the
probability of each possible analysis; the representeation is thus packed also
probabilistically. The probabilities can be made conditional on arbitrary
portions of the state of the LR parser, i.e., on the stack content and the
remaining input string.

The parse probability is defined as the product of each action proba-
bility conditional on the previous sequence of actions. Since these action
probabilites are approximated by the probabilites conditional on the state
of the LR parser, the probability of a parse is simply the product of the
probability of each decision in the packed parse forest. So in the disambi-
guation step, a Viterbi-like search of the packed parse forest can be used
to find the most probable parse. This means that the time complexity
of the disambiguation step is linear in the size of the packed parse forest,
as is calculating the string probability by summing instead of maximizing.
(Check!)

In this way, probabilistic LR parsing is broken down into two distinct
steps: Normal GLR parsing, with an extra element of attributing each de-
cision in the packed parse forest with a probability. Each such probability
is simply the product of a sequence of action probabilities, and calculating
them introduces only a constant overhead, and does not add to the comple-
xity of GLR parsing. The worst-case time complexity of the original GLR
parsing algorithm is exponential, both in string length and grammar size.
This is since there can theoretically be an exponential number of different
internal states in the size of the grammar, and for certain grammars there
may be inputs that force a parser to visit all states [Johnson 1991]. It can
however be brough down to polynomial in string length by an optimization
due to Kipps, see [Kipps 1991]. It essentially involves avoiding to search
the graph-structured stack for the return state when reducing by instead
employing a dynamically built table. Using large portions of the stack
for probabilistic conditioning counteracts this effect, and increases parsing
complexity.

The actual probabilistic disambiguation is done on the output of the
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GLR parsing step, on the packed parse forest. This can be done using
essentially Viterbi search in time linear in the size of the packed parse
forest. Although the size of the parse forest is polynomial in string length,
it is worst-case exponential on the size of the grammar for the same reasons
that parsing complexity is exponential in grammar size.

So although probabilistic LR parsing is theoretically exponential in
grammar size, in practice, it doesn’t seem to get near these bounds [Carroll
1994]. For a discussion on how to extend probabilistic LR parsing to unifi-
cation grammars, and for interesting reading on probabilistic LR parsiong
in general, we can recommend [Briscoe & Carroll 1993].

4.11 Scoring

A practical problem is that due to various probability losses, i.e., the fact
that the estimated probabilities tend to be smaller than they ought to
be, parses involving longer derivations tend to be penalized. This is bec-
ause they involve a greater number of derivation steps, involving a greater
number of multiplications with too small quantities. One popular remedy,
[Magerman & Marcus 1991], [Carroll 1994], is to instead use the geometric
mean of the probabilities instead of their product. This means that we
leave the realm of probability theory, and enter into the heuristic scoring
business. For example, this complicates using the Viterbi algorithm for
finding the most probable parse.

Due to the conditionings of the probabilites, SCFGs are rather insen-
sitive to lexical information, and in particular to lexical co-occurrences.
One method for trying to compenstate for this is to include amongst other
things lexical information in more or less ad hoc ways by devising a score
accepting contributions from various information sources. This has been
explored in a number of different contexts: For Earley parsing with Scoring,
see [Magerman & Marcus 1991], for CYK parsing with scoring, see [Mager-
man & Weir 1992], for LR parsing with scoring, see [Su et al 1991], and
for parsing with unification grammars with scoring, see [Alshawi & Carter
1994].

(To be extented.)
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Chapter 5

Selected Topics in
Statistical NLP

In the following, we will distinguish three types of literatur: Main articles,
additional articles which are of major interest in a basic course on statistical
methods in NLP (see “Also” item), and further readings.

5.1 Statistical Part-of-Speech Tagging

5.1.1 In short

max P(Tags | Word String)
Tags

5.1.2 Linguistic Background

Part-of-speech (PoS) tagging consists in assigning to each word of an input
text a (set of) tag(s) from a finite set of possible tags, a tag palette or a tag
set. The reason that this is a research issue is that a word can in general be
assigned different tags depending on context. This assignment can be done
in a number of different ways. One of these is statistical tagging, which is
advocated in [Church 1988], [Cutting et al 1992] and many other articles.
Here, the relevant information is extracted from large sets of often hand-
tagged training data and fitted into a statistical language model, which is
then used to assign the most likely tag to each word in the input text.

5.1.3 Basic Statistical PoS tagging

We will describe a generic, but somewhat vanilla-flavoured statistical PoS
tagger. Statistical PoS taggers generally distinguish between lexical proba-
bilities, 1.e., the probability of a particular tag conditional on the particular
word, and contextual probabilities, which describe the probability of a par-
ticular tag conditional on the surrounding tags. The latter conditioning is
usually on the tags of the neighbouring words, and very often on the n — 1
previous tags.
Thus we in general have the following two information sources:

e Lexical probabilities: '
The probability of each tag T* conditional on the word W that is to
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be tagged, P(1*% | W). Often the converse probability P(W | T%) is

given instead.

e Tag N-grams:
The probability of tag 7% at position k in the input string, denoted T,ﬁ,
given that tags Ty_p41...7k—1 have been assigned to the previous
n — 1 words. Often n is set to two or three, and thus bigrams or
trigrams are employed. When using trigram statistics, this quantity
1s P(T]z | Tk_Q,Tk_l).

These probabilities can be estimated either from a pretagged training
corpus or from untagged text, a lexicon and an initial bias, see Section 2.1.7.
The training data is often divided into a training set, used to estimate the
statistical parameters, and a set of held back data used to cope with sparse
data by way of backoff smoothing. For example, tag trigram probabilities
can be estimated as follows:

P(T{ | The2, Toc1) =~ Aaf(Ti | Teeo, Tio1) + Ao f(Th | Te1) + M f(TF)

Here f is the relative frequence in the training set. The weights A; =
Aj(Tk—2,Tr—1) may depend on the particular contextual tags, but are re-
quired to be nonnegative and to sum to one over j. Appropriate values
for these weights can be estimated using the held-out portion of the trai-
ning corpus by employing any of a number of techniques; two ones much
used today are deleted interpolation, [Jelinek & Mercer 1980], and modified
Good-Turing estimation, [Church & Gale 1991]. Another possibility is to
use all data for training and employ successive abstraction to perform the
backoff smoothing, see [Brants & Samuelsson 1995].

In general, the information sources Si,...,S, are combined by multi-
plying the scaled probabilities:

P(T|Sy,...,5, T P(T | 5:)
P(T) H P(T)

Z

i=1

This formula can be established by Bayesian inversion, then performing
the independence assumptions, and renewed Bayesian inversion: Assume
that we have information sources Sy, ..., S, and we wish to estimate P(T |
Si,...,Sp), the probability of tag 7" given this information.

P(T|Si,...,S,) =

PO PGS T) ey RS
P(S1,...,5) L7555

_ " P(T) - P(S | T) ~ P(T|S)

= PO U= ) -1 =5

In particular, using lexical statistics and trigram probabilities, we get

P(Ty | Ty, ..., Tpe; Wi, ., W) &
P(Ty | T2, Tx—1) - P(Tk | Wi)  P(Ty | Th—a,Th—1) - P(Wy | Tk)

P(Ty) P(Wy)

The tagger works as follows: First, each word is assigned the set of all
possible tags according to the lexicon. This will create a lattice. A dynamic
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programming technique is then used to find the sequence of tags 71, ..., T,
that maximizes

P(Tl,...,Tn|W1,...,Wn) ==

Il
=

P(Ty | Ty, .., The; Wi, ..., W) =

o
I
-

P(Ty | Theo, Tho1; W) =

R
=

e
I
—

P(Ty | Th—2,Tp—1) - P(Ty | Wy)
P(Ty)

R
=

o
I
-

P(Ty | Ty—2,T—1) - P(Wy | Tk)
P(Wy)

Il
=

o
I

1

Since the maximum does not depend on the factors P(Wy), these can be
omitted, yielding the standard statistical PoS tagging task:

n

Tma)% P(Tk | Tk_g,Tk_l) P(Wk | Tk)
1,0 n iy

This is well-described in for example [DeRose 1988].

5.1.4 Suggested Reading
e Main: [DeRose 1988], [Cutting et al 1992]

e Also: [Church 1988], [Weischedel et al 1993]

e Further: [Black et al 1992], [Schuetze 1994], [Merialdo 1994]

The first chapter of [Karlsson et al 1995] contains a nice overview of
part-of-speech tagging in general. [Church 1988] is a classical reference on
basic statistical part-of-speech taggging. Dynamic programming, in par-
ticular the Viterbi algorithm, as applied to part-of-speech tagging is very
well described in [DeRose 1988). Other sections, in particular that on the
CLAWS system, are less perspicuous. The decisive reference on dynamic
programming in general is [Bellman 1957]. [Cutting et al 1992] describes
the use of an HMM-based tagger were the parameters are estimated from
unannotated text using the Baum-Welch algorithm.

5.2 Statistical Machine Translation

‘ Currently under construction. Due mid 1996. ‘

5.2.1 In short

max  P(Target Text | Source Text)
Target Text
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5.2.2 Suggested Reading

e Main: [Brown et al 1993],

e Also: [Church 1993], [Wu 1995]

e Further: [Brown et ol 1990], [Kay & Roscheisen 1993], [Dagan et al
1993], [Gale & Church 1993], [Kupiec 1993]

5.3 Statistical Language Learning

‘ Currently under construction. Due mid 1996. ‘

e Main: [Brill 1993], [Magerman & Marcus 1990]

e Also: [Osborne & Bridge 1994], [Daelemans 1994].

5.4 Structural Ambiguity and Semantic Clas-
ses

5.4.1 Linguistic Background

In natural language analysis we have to deal with a number of structural
ambiguous constructions, i.e. syntactic structures that are equally well li-
censed by different derivations. Thus we get more than one correct parse
tree for such a construction. Depending on the context, one of the syntacti-
cally possible structures is the preferred one. In linguistics the most famous
class of structural ambiguities are prepositional phrase attachments. For
those who have never heard about such a thing, go on reading. Those who
are familiar with the term could skip this subsection.

The syntactic structure of a the famous sentence I saw the man with the
telescope can be considered as either [s I [y p saw [yp the man [pp with the
telescope]]]] or [s I [vp saw [yp the man] [pp with the telescope]]]. That
means the with_phrase can either be attached to the object noun phrase
or to the verb phrase. In the first case, the interpretation is that the man
had the telescope, in the second the telescope modifies the seeing event.
Without any extra knowledge ( semantic or pragmatic context) there is no
way to decide which of these two readings will be more appropriate. If we
consider the sentence I saw the deer with the telescope our knowledge about
the world tells us that attachment of the PP to the object NP leads to an
odd interpretation, as in our world a deer rarely comes with a telescope.
Nevertheless the structure is absolutely correct.

To deal with this kind of ambiguities a number of different approches
have been proposed, such as:

e The Discourse Model Approach
Altman and Steedman 1988 ([Altmann & Steedmann 1988]) claim

that pp-attachment can only be resolved by considering discourse
information. In terms of computational linguistics this means model-
ling of discourse information which is fairly complex and not yet well
understood.
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e The Structure-Based Approach

A number of psycholinguists tried to explain attachment preferences
by means of general principles that are supposed to govern human lan-
guage processing. Two famous but controversal priciples are right as-
sociation ([Kimball 1973]), and minimal attachment ([Frazier 1978]).
Right association states that a constituent tends to attach to another
constituent immediately to its right. Whereas minimal attachment
says that a constituent tends to attach so that a minimal number of
nodes in a derivation tree is required. But these two principles are
not accepted without argument. Interested readers may find further
discussion in [Konieczny et al. 1997].

e The Lexical Association Approach

This approach basically assumes that attachment ambiguities can be
resolved by lexical information, such as information related to the
dominating verb, the object head noun the preposition, and the head
noun of the NP dominated by the preposition. We distinguish two
major branches, one influenced from psycholinguistics®, the other ba-
sed on statistics. The later we will elaborate on in the following.

5.4.2 Association Models

The main assumption is that resolution of structural ambiguity is often pos-
sible with limited lexical information, and this information can be learned
from either a corpus ([Hindle & Rooth 1993]), or a corpus and a seman-
tic hierarchy ([Resnik 1993]). While Resnik advocates a class-based model
which makes use of conceptual relationships such as those represented in
WordNet?, Hindle and Rooth adopt lexical associations discovered from
text for structural disambiguation. Hindle and Rooth integrate lexical in-
formation on the preceding verb, the object head noun, and the following
preposition into their mathematical model. Resnik incorporates informa-
tion on the head verb, the preposition, the semantic class of the head noun
of the NP governed by the preposition, and the semantic class of the object
head noun.

Preparation of the Corpus

In order to access the relevant head nouns, the verbs, and the prepositions
the corpus must be PoS-tagged, and rudimentary parsed.

elaborate on standard taggers and synt. bracketing elsewhere

Estimation of Attachment Preferences by Lexical Information

In the training phase noun-preposition and verb-preposition bigrams as well
as noun and verb unigrams are derived from the corpus. The preposition
is either assigned to the noun or the verb. Assignment decisions are made
according to:

1See for example [Wittemore et al 1992], [Ford et al. 1982], [Taraban & McClelland
1988], [Marcus 1980).

2WordNet is a conceptual taxonomy for English words. Conceptual relati-
ons are represented as is-a hierarchies. You find more about WordNet from
ftp clarity.princeton.edu [128.112.144.1] (in the US), and ftp.ims.uni-stuttgart.de
[141.58.127.61] (in Europe).
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e purely linguistic criteria, such as PPs do not attach to pronouns, PPs
that follow a subject NP or a NP in preverbal position attach to the
NP, at least in English,

o thresholds derived from t-scores or

o defaults

If no clear attachment decision can be made, neither by linguistics,
nor by t-scores, the prepositions are equally attachted to the head
nouns of the object NPs, or to the verbs.

In order to guess attachment preferences, one is interested in the con-
trast or difference between the conditional probalility of seeing a certain
preposition given a particular noun, and the conditional probalility of see-
ing a certain preposition given a particular verb, i.e.

P(prep|noun) — P(prep|verb)

These conditional probabilies correspond to the preposition-noun or
preposition-verb bigram frequences respectively which have been derived
from the training corpus. The bigram frequencies are normalized by the
global verb or noun frequency respectively. Thus the conditional probabi-
lities are defined as follows:

f(noun_preposition_bigram)

f(noun)

P(prep|noun) =

and

f(verb_preposition_bigram)

f(verd)

For a statistics-based determination of pp-attachment preferences for a
specific sentence a t-score is derived from the conditional probabilities;

P(prep|verb) =

;= P(prep|noun) — P(prep|verb)
N o2 (P(prep|noun)) + o2(P(prep|verd))

To make sure that the significance of the result is at a certain (at least
a 95%) level a threshold is defined accordingly.® In all cases of attachment
ambiguity where the results are below the defined threshold, pp-attachment
is resolved according to the default case.

Sparse Data

Sparseness of training data is a common problem in statistics-based ap-
proaches. In case of estimation of lexical associations on the basis of word
forms a fairly large ammount of training data is required, because all in-
flected forms of a word will be considered as different words. This can be a
major problem in highly inflecting languages like German. A better result
by the same amount of data can be achieved by looking at lemmata (inflec-
tional differences are ignored) or even at semantic classes. In the later case
different words/lemmata are grouped together according to their semantic
or conceptual characteristics.

3For definition of significance levels see chapter 77.
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Estimation of Class Frequencies

In a training corpus the head nouns of the object NPs, and the head nouns
of the NPs subcategorized from a preposition are related to conceptual
classes in WordNet. Class frequencies are estimated from lexical frequencies
such that the frequency of a specific class C is determined by the lexical
frequencies of the members n of that class and its subclasses ¢, i.e.

(o)=Y f(n)

necCC

Estimation of Conceptual Relationships

Conceptual relationships are discribed by means of selectional preference,
selectional association, and semantic similarity.

The term selectional preference originates from linguistics. It is used
to capture semantic differences such as those given in Mary drank some
wine / gasoline / pencils / sadness. While drinking and wine semantically
correspond well, drinking of gasoline is quite odd, pencils are impossible
to drink, and the semantic interpretation of drinking sadness is subject
to metaphorisation. A widely used technique in statistics-based NLP to
represent conceptual (dis)similarity is entropy (cf. ?7). Thus the selectional
preference of a word w for C', a semantic class and its subclasses, is defined
as the relative entropy (also known as Kullback-Leibler distance) between
two sets of probabilities, the prior probability P(C) and the conditional
probability P(C|w), which can be written as

P(clw)
P(c)

HIP(Clw), P(CY) = 3. Plcw)log

c|subconcept_of _C

The selectional association between a word w and a subconcept ¢,
A(w, ¢), is the contribution ¢ makes to the selectional preference of w for
C, i.e. the relative entropy between a wird w, and a concept ¢ normalized
by the relative entropy between the word w and the larger concept C.

P(c|w)logpl(f(|c7“§)
A0 = FTp(CTw), P(C)

The selectional association between two words wy and wy, A(wy, ws) is
the maximum of A(wy, ¢) over all classes ¢ to which ws belongs.

A(wy, w2) = maz E A(ws, )

clwa€c

The semantic similarity of two nouns ny, ns, sim(ny, ng), is defined
by the most specific class ¢ both ny and ny belong to, i.e. the class ¢ which
1s most informative for n; and no.

sim(ny, n2) = maz[—logP(c)]

Class-Based Evaluation of Attachment Sites

The following trigrams are derived from the corpus and the noun taxonomy:

e verb_preposition_class;
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o class; preposition_class;

Where class; is the conceptual class of the object NPs head noun and
class; is the conceptual class of the head noun of the NP dominated by the
preposition.

Verb- and noun-scores are calculated as the relative entropy of the
verb_preposition_class; trigram frequencies, and the class; preposition_class;
trigram frequencies, such that

P(verb_prep_class;)
P((verd)

vscore = f('veT’b—PT'f?P—CIGSSj )109

and

P(class; -prep_class;)
P((class;)

nscore = f(class; prep_class;)log

To reduce the load of computation, first all classes of the preposition’s
nominal object are considered, and then the class of the verb’s nominal
object is maximized. A paired t-test is calculated on the v- and nscores. In
case of a positive result, the PP is attached to the object NP. In case of a
negative result, the PP is attached to the verb.

Estimators

Hindle and Rooth work with ELE, Resnik suggested MLE or Good-Turing.
For a discussion of estimation techniques see 77.

5.4.3 Suggested Reading
e Main: [Hindle & Rooth 1993]

e Also: [Resnik 1993]
e Further [Alshawi & Carter 1994]

5.5 Word Sense Disambiguation

Word sense disambiguation is a rather widespread task in statistical NLP.
The approaches vary wrt. the parameters they estimate disambiguatuation
information from. The techniques applied are rather similar. Parameters
are either estimated from monolingual ([], []) or bilingual* corpora ([Gale
et al 1992], [Brown et al 1990]). In case of monolingual training material,
words are either clustered according to their distribution in structural con-
text ([Pereira et al 1993], [Dagan et al 1994], []) or their distribution wrt.
semantic category ([Gale et al 1992], [Yarowsky 1992]).

5.5.1 Phenomena
5.5.2 Parameter Estimation

5.5.3 Disambiguation Model

Bayesian discrimination

4The standard bilingual is the Hansards corpus which comprises the french-english
translations of Canadian Parliament speeches.
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relative entropy
mutual information
?singular value decomposition

?linear regression
777

5.5.4 Suggested Reading
e Main: [Gale et al 1992], [Yarowsky 1992]

o Also: [Yarowsky 1992], [Gale et al 1992]

o Further: [Pereira et al 1993], [Schuetze 1992], [Dagan et al 1993],
[Dagan et al 1994]

5.6 Lexical Knowledge Acquisition

max P(Lezxical Entry | Text)
Lezical Entry

. Main:[Manning 1993], [Utsuro et al 1992], [Smadja 1993]
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Appendix A

Desiderata

The follwing appendices are planned:
e More on Calculus
e Some Numerical Analysis
e Some Statistical Tables (Distributions, etc.)

e Corpus Linguisitc Tools
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Appendix B

Tools

B.1 Simple Unix Commands

Before we can do all the fancy statistics on texts, we need to access the raw
data. Unix provides a number of built-in commands that are very useful
to do so. In the following a list of elementary commands valuable for text
preprocessing is given. The online man pages on your Unix machine will

give you more information on the specific commands.

Command
grep

egrep

sort

uniq

tr

wce

cut
paste

join
comim
cat
tail
split

split -n
sed

Unix also comes with a number of programming languages of which the

Usage

search a file for a pattern

search a file for disjunctive patterns

sort and/or merge files

report repeated lines in a file

translate characters

display a count of lines,

words and characters in a file

cut out selected fields of each line of a file
merge same lines of several files or

subsequent lines of one file

merges those lines of a file that have the same key
select or reject lines common to two sorted files
concatenate files

writes the last part of a file to standard output
split a line by indicated split characters

and particularly useful:

split a file into pieces of n lines

stream editor

following are popular for text handling:

Awk is a pattern scanning and processing language that is preferably

used for database construction.

Lex or its successor flex is a language for lexical analysis. Typically
tokenizer are written in lex or flex. Lex programmes can be inter-
leaved with C code. They are compiled into C, and thus are rather

efficient.

Perl is a language for easy manipulation of text, files, and processes.

113



114 APPENDIX B. TOOLS

It borrows capabilities from shells and C, and subsumes awk and sed.
Perl is compared to C easy to learn, but not very efficient.

From the following examples! you might get an idea about what you
could do with the above commands. A good guide for novices is Ken
Church’s Uniz for poets [Church 1994].

For those who are not used to Unix, the following is to understand the
syntax of the command lines occurring in the examples below:

< read from input file
> write to output file
| pipe
| more pipe to more;
more displays standard output screenwise

The following is a list with the most essential characters to build search
patterns with:

+ one or more instances of a specified pattern
zero or more instances of a specified pattern
? at most one instance of a specified pattern
. any single character
[a-=z] any one character from the small alphabet
[A-Z] any one character from the ?big alphabet
[0-9] any one number between O and 9
begin of line
$ end of line
| disjunction of patterns
\ indicates that the following character is

interpreted as such

B.2 Split up a text using tr

e Split up a text by blanks, and write each word (i.e. string of characters
surrounded by blanks) in a single line to a file. The input file is infile,
the output file is outfile. \012 is the ASCII code for new line.

tr ’ ° ’\012’ < infile > outfile
e Get rid of empty lines.
tr -sc ’A-Za-z’ ’\012’ < infile > outfile
Now you have a file, lets call it wl, containing your input text as word
list. With the word list you can do other fancy things.
B.3 Sort word list: sort, uniq

e Sort word list by dichtionary order.

sort -d wl

1The material is taken from an introductory course on corpus linguistics held by the
authors at Uppsala University.
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e Sort word list by dichtionary order, and get rid of duplicates. Write
output to outfile.

sort -d wl | wuniq > outfile
or
sort -du wl > outfile

e Sort word list by dictionary order, get rid of duplicates, and give a
count of how often each word appeared in the word list.

sort -d wl | uniq -c > outfile

e Sort word list according to word frequency (numeric order).

uniq -c¢ wl | sort -d > outfile

B.4 Merge counts for upper and lower case:
tr, sort, uniq

e Sometimes you just want to know how often a specific word occurs
in a text. And you do not want to make a distinction between upper
and lower case letters.

tr ’A-Z’ ’a-z’ wl | uniq -c¢ | sort -d > outfile

B.5 Count lines, words, characters: wc

wc infile counts lines, words, characters
wc -1 infile counts lines
wc -w infile counts words
wc -m infile counts characters
B.6 Display the first n lines of a file: sed
sed bq infile displays the first 5 lines of the file infile

sed 50q infile displays the first 50 lines of the file infile
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B.7 Find lines: grep, egrep

grep gh find lines containing ’gh’
grep ’“gh’ find lines beginning with ’gh’
grep ’hg$’ find lines ending with ’hg’
grep ’“gh.*hg$’ find lines beginning with ’gh’

and ending with ’hg’

grep -v gh delete lines containing ’gh’
grep -v ’“gh’ delete lines beginning with ’gh’
grep -v ’gh$’ delete lines ending with ’gh’

grep -v ’“gh.*hg$’ delete lines beginning with ’gh’
and ending with ’hg’

Note with egrep you can specify disjunctive search patterns; for instance:

egrep ’ful$|ly$lant$’ find lines ending with
’ful’, ’ly’, or ’ant’

B.8 n-grams: tail, paste

Suppose we have got a text file with each word on a single line. Now we
can easily create all sorts of n-grams simply by using tail and paste. wl
contains the original word list, nextwords contains the original word list
reduced by the first element, nextnextwords contains the original word list
reduced by the first two elements. The files bigrams, and trigrams contain
all bigrams or trigrams respectively occurring in the text.

e Create bi-grams: tail, paste

tail +2 wl > nextwords
paste wl nextwords > bigrams

e (Create tri-grams:

tail +3 wl > nextnextwords
paste wl nextwords nextnextwords > trigrams

B.9 Manipulation of lines and fields: awk

Despite awk is a general purpose programming language it is intended for
shorter programs, especially for easy manipulation of lines and fields. Note,
awk 1s fully integrated into Perl. Warning: awk also comes as nawk, and
gawk.

The following is useful to know:
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Fields are addressed by $ fieldnumber

$1 first field
$NF last field
$(NF-1) penultimate field

Some operators

>, <

3

For more information see the man pages.

With -F you specify the field seperator, e.g. -F: specifies : as current
field seperator. Blank is the default field seperator.
Select fields by position

The following command line specifies : as the current field seperator,
and prints the 4th field of each line (record) to standard output. The
input file is infile.

awk -F: ’{print $4}’ infile

Filter fields by numerical comparison

The following command line matches fields where the numerical value
of the first field is larger than 2, and prints the contents of the 3rd
field of the according record to standard output. The file seperator is
set to default (i.e. blank). The input file is infile.

awk ’$1 > 2 {print $3}’ infile

Filter fields by string comparison

The following command line matches lines where the first field is
identical to the last one, and prints the contents of the 3rd field to
standard output. The file seperator is set to default (i.e. blank). The
input file is again infile.

awk ’$1 == $NF {print $3}’ infile
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Appendix C

Some Calculus

C.1 Numbers

C.1.1 Natural Numbers

N={0,1,2..}

The natural numbers are the natural ones when counting, i.e., for ans-
wering questions of the type “How many articles did Brigitte write this
year?”.

The most important formal property of these numbers is that every one
of them has a unique successor, i.e., there are countably infinitely many of
them, and there is a linear order defined on them.

Also, one can add and multiply natural numbers, e.g., 2+ 3 = 5 and
2 -3 = 6. Thus, addition (4) and multiplication (-) are defined for these
numbers.

C.1.2 Integers

Z=1{.,-2,-1,0,1,2,..}

7t ={1,2,..}

If we can add natural numbers, we can also formulate equations over
them, e.g., 242 = 5. However, to guarantee that we always have a solution
to these additive equations, we are forced to extend the set of natural
numbers with the set of negative integers to form the set of integers, e.g.,
when we want to solve the equation 5 + x = 2.

This means that for each n € N we introduce the additive inverse —n
with the property that n + (—n) = 0. n + (—m) is usually written n — m
if m € Zt. Note that 0 is its own inverse, since 0 + 0 = 0. In fact,
z+4+ 0 =0+ 2z = z for all numbers z, and 0 is formally referred to as the
neutral element, or identity, of addition.

C.1.3 Rational Numbers

The set of rational numbers @) is the set of all numbers of the form T, with
n
m,n€ Z,n#0.

119
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Q:{m:x:%,m,néZ;n#O}

We can also formulate multiplicative equations over the natural numbers
and the integers, e.g., 2.z = 6. If we want to guarantee that we always have
a solution to these equations, we are forced to extend the set of integers
to the set of rational numbers, e.g., when we want to solve the equation
2-2=35.

Analogous to extending the natural numbers with their additive inver-
ses, we will extend the integers with their multiplicative inverses. i.e., for

each integer n we add n~! with the property that n-n=!' = 1. m-n~1!is

usually written m/n or —. The only exception is the number 0, which has

no inverse, since 0 -z = (7)17é 1 for all numbers z. Similarly, 1 is the neutral
element, or identity, of multiplication, since -1 = 1-2 = x for all numbers
x, and 1 is its own multiplicative inverse.

Since we don’t want to be able to multiply ourselves out of @, we need to
add a lot of other numbers, apart from n~! for all integers n, namely m-n~!
for all pairs of m,n € Z. Note that some pairs correspond to the same

. 2 1 .. . C e
rational number, e.g. — = —. This is called constructing the multiplicative

closure of {0,n,n™1: 0 # n € Z}. We should really construct the additive
and multiplicative closure, which is known as the algebraic closure of this
set, but here, the multiplicative closure alone suffices.

Since each rational has an additive inverse and each rational, except 0
has a multiplicative inverse, and since addition and multiplication are both
commutative operations (m 4+ n =n + m and m - n = n - m), the rational
numbers constitute what is in algebra known as a field.

There is also a linear order defined on the rationals ). Note that, as
opposed to the case with the intergers, there is always another rational
number between any two distinct rational numbers, i.e., if we have p < g¢,
then there is an r € @) such that p < r < q.

C.1.4 Real Numbers

We can formulate nonlinear equations over @, e.g., z -z = 2. The fact that
there is no rational number that solves this equation came as a shock for
Pythagoras and his followers, a shock that they never fully recovered from.
The proof of this is rather simple, and runs roughly as follows: The basic

idea is that if # = — solves this equation, where m and n are integers with

n
no common factors, then both m and n are divisible by 2, and thus do have
a common factor. Now, any rational number can be written on the form

m .
z = —, where the integers m and n have no common factors, so we must
n

conclude that there is no rational solution to this equation.

There is however another way to escape from the set of rationals using
the linear order, rather than addition and multiplication, namely by the
use of limits, see Section C.2.6. Assume that a, € @ for n = 1,2,... This
does not imply that nlinolo a, € @. We will informally define the set of

real numbers as is the set of limits of sequences (a,) over @, rather than
mucking around with Dedekind cuts, although this definition is circular,
since the real numbers are used to define limits.

Like the rational numbers, the real numbers have the property that
each of them has an additive inverse and each one of them, except 0, has a
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multiplicative inverse, and also here, addition and multiplication are both

commutative operations. Thus, the real numbers also constitute a field.
There is also a linear order defined on the real numbers, like on the

rationals (). Unlike the rationals, though, if a, € R for n = 1,2,.. ., then

the limit lim a, € R. Thus the set of real numbers is closed under limits.
n— 00

This property is referred to as constituting a complete metric space.

Since we defined R as the set of limits of sequences in @), there is a
rational number arbitrarily close to any real number. This means that @
is dense in R.

C.1.5 Complex Numbers

Let z2 denote z - z, see Section C.2.1, and assume that we want to solve
the equation 22 = —1. There is no real number that solves this equation,
since for real numbers, 22 > 0. If we extend the real field with a solution to
this equation, denoted ¢, and take the algebraic closure, we get the complex
numbers C', which also constitute a field.

The complex numbers are usually written on the form z = x + iy, where
z,y € R. z is called the real part of z (as you might have guessed), and y
is called the imaginary part of z.

This extension actually allows us to solve any equation of the form

enz? +en_12" P+ +eiz+e=0 with ¢ el
in the sense that
Vze cnzn+cn_1z"_1+~~-—|—clz—|—coz(z—z1)~...~(z—zn)

Note that the roots (i.e., solutions) z; need not be distinct.

This means that there are no natural algebraic extensions of C', unlike
the case with N, and R. So from this point of view, we’ve reached the
end of the line.

However, we do not have any linear order defined on the complex num-
bers. We can nevertheless introduce a distance between any two complex
numbers z; = x1 + iy; and z3 = x5 + 1y2, namely the Euclidian distance
d(z1,22) = /(@1 — 22)” + (1 — y2)?.

Just like for the real numbers, it is the case that any sequence z1, 23, . ..
in C' that converges (using the Euclidian distance), converges to an element
in C, so also from this point of view C is complete (i.e., a complete metric
space), and no extension to the complex numbers suggests itself.

C.1.6 Algebraic and Transcendental Numbers

Assume that all the cofficients ¢; of the equation above are rational numbers
(or, equivalently, integers), i.e:

@z F ap_ 12" P+ Fajz+ay =0 with a; € Q

The solutions to these equations are known as the algebraic numbers
over (). Note that the rationals and thus the integers and natural numbers

1 .
are all algebraic over . Other examples are /3, ¥/2 and ﬂ

However, not all real numbers are algebraic over @. It is actually the
case that the overwhelming majority of the complex and real numbers are
not algebraic over (). These numbers are called transcendental numbers
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(over @). The transcendental numbers include such celebrities as «, the ra-
tio of the circumference and the diameter of a circle, and ¢, the base of the
natural logarithm. This was first observed by the German mathematician
Cantor, who proved the existence of (a very large number of) transcen-
dental numbers without actually constructing a single one. He did this by
comparing the sizes of the set of algebraic numbers, which is countable,
and the set of real numbers, which is uncountable. Thus, there must be an
awful lot of non-algebraic, i.e., transcendental, numbers.

For further details on the number systems, consult any introductory
book on the topic.

C.2 The Very Basics

C.2.1 Exponentials

If not indicated differently, the following holds for a,b # 0, n,m € 7,
r,s,p,q €2t

a*=a""'a
a® =1

a_n:ain
0"=0

0% not defined

0™" not defined

an . am — an+m
p r P r .
ad -as =aats obviously q,s %0
a’ r—s
— =a for r,s, €7
aS
b3
aq P_r .
=T obviously q,s 20
as

(a") = (a*) =a"* but note that (a®)" # a") for rs,€Z
(a-b)" =a™-b™

(3)=(3) for  rseEZ
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o a" ¢ r>s
— = 1 r=s for r,s, € Z
as 1
= r<s
a>1: r<s it a” < a’
0<a<l: r<s iff a” > a’

(a+b)2:a2+2ab+b2

(a+ b)3 = a3+ 3a%b% + b3

or generally:

az—b2:(a—b)(a+b)

a® — b3 = (a — b)(a2 +ab+ bz)
or generally:
an _ bn — ((1 _ b)(an—l +ban—2 4t bn—2 + bn—l)

C.2.2 Roots
The following holds for a,b € RE)F, nez:

Ya=b iff M =a

123
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\q/a_p = q\k/ apk

If you did not know it already, you might have realized from the above
that exponentials and roots are inverses over RE)F.

C.2.3 The Exponential Function

The exponential function exp(x) also known as e” is defined as follows:

ok
exp(x) :Z%_ex ,tER
k=0
exp(l) = T=¢
k=0 k!

For the exponential function e” it holds that:

exp(z) - exp(y) = exp(e +y) Jfor all r,y € R

This is called the addition theorem for exponential functions. Now
we can derive

exp(0) =1
Which followes from
exp(z) = exp(xz + 0) = exp(x) - exp(0)

exp(z) = exp(x) - exp(0)
exp(x)
exp(x)

exp(0) = =1



C.2. THE VERY BASICS 125

From this it followes that

cap(-=2) = exp(x)

We can see this from
exp(—x) - exp(x) = exp(e — x) = exp(0) =1
For all z € R, the exponential function exp(z) is positive:
exp(z) >0

The exponential function ezp(z) is continuous, and strictly monotoni-
cally increasing.

lim exp(z) =0

r——00

lerrolo exp(z) = o

For the exponential function ezp(z) the following equations hold:

1 11 1 1
e =exp(l) = exp(n- —) = exp(—+ — 4.+ —) = (exp_)"

n L., I, 1
e = (e:vpg) _emp(n)_e

m m 1 1., N
en = ea:p(g) =exp(m- E) = emp(g) = Vem =

With the knowlege on exponential functions at hand, the formulas in
C.2.1 and C.2.2 should have become much clearer now.

C.2.4 Logarithms for Beginners

We differentiate between the natural logarithm In with base e, and the
general logarithm log, with base @, a > 0. The natural logarithm In is the
inverse of the exponential function ezp(z) in the interval (0, 00). Thus, the

following holds:

In(exp(z)) = = , for all r€ER
exp(ln(z)) = = , for all r€RT

y=In(z) =z =¢" , for all r€R*
In is continuous and strictly monotonically increasing.

In1=0

lir% In(z) = —c0
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lim In(z) = o

The multiplication theorem states:
In(z -y) = In(z) + In(y) ,2,y >0
From the multiplication theorem we can derive:

In(z") = n - In(z)

In(/z) = % -In(x)

From e” and In(z), the general exponential function a® with a > 0,

a# 1, and b € R is definded as
a® = exp(b - In(a)) = etin(a)

Similar to e®, the inverse of the general exponential function exists,
which is called the general logarithm log, with base a:

log,(a®) = = , for all r€ER

From this it 1s obvious that:

log,(a) =1
log,(1) =0
We further have:
a'o8:(*) — , for all a>0
and obviously
log, a'°8(*) = log, x , for all a>0
y =log,(z) = a¥ =z , for z>0

From the multiplication theorem we can derive

loga(my) =Y loga(‘r)

log,(z7") = —log, ()

The general logarithm log,(#) is continuous, and strictly monotonically
increasing for a > 1, and strictly monotonically decreasing for 0 < a < 1.

log,(z - y) = log, () + log,(y)

Of course, if a = e we get the natural logarithm In.
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For the relation between logarithms with different bases see the following
equation:
In(b

log,(y) = ln(a)) -logy () , for y>0

From the following three equations we easily understand how the minus
comes into the formula for entropy (cf. chapter Rfentropy, p. 77).

logl =0

log(%) = log(a) — log(b) obviously we have

(~log(x)) = (~log(y)) = ~los(>)

Remember, we had

1

— =M
i pi

possible outcomes, which we rewrote as

1
logy— = logs M),

K3

which in turn equals

1
logaMp, = logs— = log>1 — logap; = 0 — logap; = —logap;

i

In the same chapter we also had
—pilnp; — 0

This becomes clearer by considering that
;i_r% zlnz =0

which followes from the known limit, that z goes faster to zero than Inz
goes to —oo.

C.2.5 Factorial
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C.2.6 Sequences

A sequence defines an ordering on the elements of a set. Consider for in-
stance a sequence of real numbers, which is an enumeration of real numbers
ordered by natural numbers. Each real number in a set of reals is related
to a natural number. Thus, the reals are ordered according to the natural
numbers. We have the function f : N — R, n € N, with f(n) usually
written as a,.

a11a2’a31...?an1...

The element a, is called the n-th element of a sequence. The set of all
elements a;, i=1,2,3,....,n is called the range of the sequence (ay,).

For sequences, we say:

A sequence is called strictly monotonically increasing if for all n

apn < An41

A sequence is called monotonically increasing if for all n
apn S An 41

A sequence 1is called strictly monotonically decreasing if for all n

Ap > An41

A sequence is called monotonically decreasing if for all n
Ap Z An 41

Upper and lower bounds

An upper bound of a sequence is an element k such that
an < k , for all n

A lower bound of a sequence is an element k such that
an >k , for all n

A sequence that has an upper bound is called upwards bounded.

A sequence that has a lower bound is called downwards bounded.

A sequence that has an upper bound and a lower bound is called upwards
and downwards bounded.

The least upper bound is called the supremum. If some element in
the sequence takes the value of the supremum, the supremum is called the
maximum.

Equivalently, the greatest lower bound is called the infimum. If some
element in the sequence takes the value of the infimum, the infimum is
called the minimum.

Convergence

A sequence (ay) is called convergent with a limita, a € Rifofall € > 0
there is an index n. such that for all indices n > n. it holds that |[a—a,| < €.
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In other words, all but a few elements of a convergent sequence (a,) lie in
the open interval (a — €, a + ¢), which is called a neighbourhood of a. For
the limit @ we write:

a=1Ulim,_.a,
Characteristics of convergent sequences:
(i) A convergent sequence (ay) has an unambiguously defined limit.
(ii) Convergent sequences are upwards and downwards bounded.

(iii) Given two convergent sequences (a, ), (b,) with lim,_.cca, = a and
limy,_ by, = b then the sum, difference and product are convergent, and

the following holds:

limp oo (an + bp) = limy oo (an) + limp oo (bn)
limp—oo(an — bp) = limy oo (an) — limp oo (b))
limp —oo(an - bp) = limy oo (an) - limp oo (by)

limp_ooc-an = ¢ lim,_oo(an) , for all cER
The quotient §= with b, # 0 is convergent, and the following holds:

li an _ limu_oo(an)
Mp—soco7T = 777
by limp_oo(by)

In case the limit a is unknown, convergence can be decided by the
following criteria:

e the Cauchy criterion, and more practically relevant by

e the following theorem:
A monotonically increasing, upwards bounded sequence is convergent.
A monotonically decreasing, downwards bounded sequence is conver-
gent.

The Cauchy criterion for sequences states:
A sequence (ay) is convergent iff for all € > 0 there is a n. such that for
all p, ¢ > n. it holds that |a, — a,| < €.

C.2.7 Serles

From any sequence (a,) we can define a series (s,) by summing up the
elements a; of the the sequence (ay). Thus, we have

o0

a1+a2+a3+~-~+an+~~zzak
k=1

n

Sn:a1+a2+a3+"'+anzzak
k=1
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We say that the series (sy,) is the n-th partial sum of the sequence (a,).

Convergence
If the series (s,) converges to s, the series is said to converge. We write

o
E ar = 8§
k=1

The number s is called the sum of the series or point of convergence,
which in fact means that s is the limit of the sequence of partial sums of
the series.

n
s=1lim,_ooSn = lim,_ E ag
k=1
The Cauchy criterion for convergence restated for series says:

> e, ap converges iff for all € > 0 there is a n. such that for all n > n.
and for all p € N,p > 1 it holds that

n+p

| Z ak|<€

k=n+1
In the following, characteristics of convergent series are given:

For two convergent series > ,-, ax with sum s, and Y ;- by with sum
t, the series EZO:1 ap + by and Ezozl ap — by are also convergent, and the
following holds:

Zak—}—bk:s—l—t
k=1
Zak—kaS—t
k=1

. . co .
Given a convergent series ).~ | a; with sum s:

(o]
Z c-ap=c-s , for cER is convergent
k=1
For the elements a;, i = 1,2,3,---,n of a convergent series (s,) the
following holds:

lim a, =0
n— oo
In other words, the elements of a convergent series (s, ) form a sequence
(an) that rapidly goes to zero.

The series Y ,_,; ai is said to converge absolutely if the series Y - | [ag|
converges. From this it follows that for the absolutely convergent series
> peq ar with sum s, and ;2 by with sum ¢, any series of the products
ap - by, k,1 > 1 is absolutely convergent, and

n

n

lim g ar by=s-1

n— 00
k=1 =1
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By definition, a non-negative convergent series Zzozl ay, where thus
ap > 0, is absolutely convergent.

Theorem: If 77, aj converges absolutely, then Y77 | aj converges.

In the following three sufficient conditions for convergence of series are
given:

Comparison test

Given two series Y p_; b, and Y p_; @n, and 0 < a, < by,
(1) >-h—; an is convergent if 3", _, b, is convergent,

(i1) "2, by is divergent if 7 | ay is divergent.

If

lim 5% =50

n— 00 bn
this can be restated as

Y k—qan is convergent iff ), b, is convergent.

Root test
If {/]ax] < ¢ < 1,forall k> 1, then Y ;—, ay is absolutely convergent.
If {/lax| <g>1,forallk > 1, then > ,_, aj is divergent.

If {/|ax| < ¢ =1, for all k > 1, no information on convergence can be
derived.

Ratio test

If —lal’;:lll < g <1, for k > ko, then Y ;7 | ag, with a; # 0 is absolutely

convergent.

If % <q>1,for k> ko, then > ;7 ax, with a; # 0 is divergent.

Theorem: Leibniz
Suppose, a series Y p.; ay has the following characteristics,
(i) the sequence of its elements is positive and monotonically decreasing
|la1| > |az| > [ag| > -
(ii) negative and positive elements alternate
a2m—1 Z 07 y A2m S 0 , M = 1a2a3a"'
(iii) the sequence converges to 0

Iim a, =0
n— 00

Then, the series 377 | aj converges.
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C.3 Onthe Number ¢, the Exponential Func-
tion and the Natural Logarithm

The number e has received a lot of attention in Mathematical Analysis for
several reasons. One often sees the following as the definition of e & 2.72:

=1
=3
n!
n=0

e is not an integer, nor a rational number, nor, in fact, an algebraic one.
Alternatively one sees the following limit as the definition of e:

1
=l 1+-)?
€= lim {1+
The exponential function is denoted e” or exp(z). It is defined on the
set of real numbers R as

T _— -
=2
n=0
In fact, it is defined in the same way also for complex numbers. The reason

that this function has received so much attention is the fact that it is its
own derivative, i.e:

d
dre

T _ T
Actually, Ce® is the only function for which this is the case. Here C is an
arbitrary multiplicative constant. This is true not only viewed as a real-
valued function of a real variable, but also as a complex-valued function of
a complex variable.

The inverse function of €%, i.e., the logarithm with base e, is called
the natural logarithm and “log, 2” is often denoted “Inz”. Extending this
function to the complex plane is slightly more complicated, and In z is only
defined for positive x when viewed as a real function.

The following integral keeps popping up when working with the Normal
distribution:

/ et dl = T

This can most easily be seen by noting that the integral over the real plane
R? should be that same in both Cartesian and Polar coordinates:

(/ et dt)? / / e+ ) 4y gy =
27 R
/ / " dr do = 271'[——6 "l =

For those who are a bit worried about the terms Cartesian and Polar coor-
dinates: Cartesian coordinates are the usual (rectangular) coordinates of
the real plane, often referred to as the z and y coordinates. Polar (cir-
cular) coordinates describe the real plane by giving the distance to the
origin and the angel, in radians, with the z axis. For example, the point
(1,1) in Cartesian coordinates corresponds the the point (v/2, 7/4) in Polar
coordinates.
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Tagsets

For the annotation of written text we distinguish two classes of tags: word
level and phrase level tags. Word level tags represent information related to
lexical descriptions, i.e. information related to single word forms or lemmas.
Phrase level tags represent information related to phrasal descriptions, i.e.
the role a lexical element plays within a phrase, and the relations that hold
between phrases.

D.1 Word Level Tagsets

D.1.1 Representation of Word Level Tags

The most wellknown species of tagsets are part-of-speech (PoS) tagsets.
They have become popular because of the variety of recent approaches to
PoS-tagging. PoS-tagsets ideally represent exhaustive information on syn-
tactic category, morphological features, punctuation, and some other kind
of word level information such as symbol, abbreviation, foreign material,
brackets, quotes, etc. A tag represents a specific portion of information
related to lexical descriptions. This may either be

e asingle dimension of linguistic information, see for instance the Cons-
traint Grammar tags for syntactic category such as V, A, ADV, DET,
N (verb, adjective, adverb, determiner, noun), p. 146, or

e various combinations of dimensions of linguistic information, see for
instance the Susanne wordtags for verbs where syntactic category, in-
formation on transitivity and inflection are combined. [Tzoukermann
et al 1995] propose tags that are composed from syntactic category
and morphological features, e.g. VIP3S the tag representing the in-
formation: verb, indicative, present, third person, singular.

Another way of combining linguistic information is by conjunction of
tags. See for instance the Constraint Grammar tagset, where a small num-
ber of PoS-tags, representing syntactic category, is combined with sets of
PoS-specific features, p. 146. The word level annotation
$<$sSv0$>$ V PRES -SG3 VFIN Q@+FMAINV for instance represents the follo-
wing linguistic information: transitive (<SVO>), verb (V), present (PRES),
non-third singular (-SG3), finite (VFIN), matrix verb (@+FMAINV).

In some tagsets, information on word level is combined with phrase
level information. In Constraint Grammar, for instance, phrase level infor-
mation is annotated at word level, ¢f.@+FMAINV. Another example are

133
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the Stuttgart-Tubingen tags ADJA and ADJD representing information
on the adjective’s grammatical function, namely attributival (ADJA) vs.
adverbial or predicative (ADJD), or the distinction between prepositions

(APPR) and postpositions (APPO), p. 153.

D.1.2 Mapping between Linguistic Descriptions and
Tagsets

Armstrong et al. ([Armstrong et al. 1995]) for instance propose map-
ping between tags and descriptions with manually defined mapping tables.
Linguistic descriptions are envisaged to be either represented as attribute
value pairs, e.g. cat = prep is mapped to the tag PREP, or as typed fea-
ture structures, such as N[num=pl] which is mapped to the tag NPL, or
as shortcuts for feature combinations, such as BD3FP (personal pronoun,
third person, femininum, plural) which is maped to the less informative tag
bfp (personal pronoun, femininum, plural), or V.sg.l.pres (verb, singular,
first person, present) which is maped to the less informative tag VPR (verb,
present tense). More consequently, Tzoukermann et al. ([Tzoukermann et
al 1995]) regard tags as abbreviations of hierarchically organized features,
with PoS as supertype. Thus, the information related to verbs is organized
as followes: verb (PoS) is a supertype of mood, person, number, and tense.

D.1.3 Tagsets and the Representation of Ambiguity

A crucial feature of lexical description is ambiguity. A single word form may
relate to various mutually exclusive portions of linguistic information. The
English word form stress for instance is either a verb or a noun. In the verb
reading, it relates to a finite or non-finite form, and the finite reading can be
interpreted as either present indicative or imperative. In highly inflecting
languages, such as German, inflection introduces a great amount of ambi-
guity. Therefore morhological information is largely excluded from tagsets,
see for instance the small and the large version of Stuttgart-Tubingen tagset
for German (STTS) [Thielen and Schiller 1995].
Ambiguity within tagsets is dealt with either by

e omitting portions of highly ambiguous linguistic description,

cf. the small Stuttgart-Tubingen tagset;

e underspecification,

see for instance the hierarchical organisation of the tag names, where
the initial characters represent the most general information, typi-
cally the syntactic category, e.g. VB for verb in general in the Penn
Threebank tagset, V in the Susanne tagset, and the STTS;

e disjunctions over tags or tag combinations.

D.1.4 Minimal Criteria for the Development of PoS-
Tagsets

o Tags shall be kept as theory neutral as possible, in order to guarantee
a high degree of descriptive generality.

e Tags should reflect a clear-cut distinction between different dimensi-
ons of linguistic description, in order to allow for a clear specification
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of the descriptive level, and for flexible and controlled access to vari-
ous kinds of linguistic information via the tags.

e Tags must be defined and documented with examples in such a way
that maximal intercoder consistency is guaranteed. Especilly proble-
matic cases for annotation must be documented extensively.

To achieve compatibility of PoS-tagsets guidelines for standardized le-
xical description have been proposed, and tools for compatibility checks
between tagsets have been developed. For the former see for instance the
EAGLES activities on standardization of lexical descriptions (e.g. [Mo-
nachini and Calzolari 1994], [Teufel 1995b]). For the later, see for instance
[Teufel 1995a], [Armstrong et al. 1995].

In the following, a number of tagsets for annotation of text (written
language) is given. From the examples, we will see that tagsets provide more
than mere PoS, but the information actually used in statistics reduces to
a subset of approx. 50 to 100 PoS-tags. This is because when using large
tagsets huge training corpora are necessary, which unfortunately do not
exist.

D.2 Tagsets for English Text Corpora

English is the language the largest amount of annotated text is available for.
Thus, most of the statistics-based approaches to NLP have been developed
on English text.

D.2.1 The Susanne Tagset

The Susanne tagset is a classic among tagsets. The Susanne coprus has been
derived from the Brown corpus ([Francis & Kucera 1982]). Annotation at
word level in the Suzanne corpus is comparable to a data record: Each re-
cord of a Susanne file comprises six fields: reference, status, wordtag, word,
lemma, and parse field. The Susanne annotation scheme distinguishes tags
representing surface grammar (i.e. phrase structure), and tags representing
logical grammar (i.e. argument structure).

The reference field contains information about which file the annota-
ted word is part of, and where it occurrs in the Brown Corpus.

The status field indicates whether a word form is an abbreviation (A),
a symbol (S), or a misprint (E). If none of those are applicable the status
field contains a hyphen.

The wordtag field comprises 353 distinct wordtags (PoS-tags), plus
additional tags for idioms. It is based on the ” Lancaster” tagset listed in
[Johansson et al. 1986], and enriched by additional grammatical distinc-
tions which are indicated by lower-case suffixes. In the following we will
only give a few examples on verbs, so that you get an idea of how Susanne
wordtags look like. The gory details you’ll find in [Sampson1995].
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Command Usage

VB0 be

VBDR were

VBDZ was

VBG being

VBM am

VBN been

VBR are

VBZ is

VDO do

VDD did

VDG doing

VDN done

VDZ does

VHO have

VHD had (past tense finite)

VHG having

VHN had (past participle)

VHZ has

VMK ought

VMd modal (past)

VMo modal (present)

VV0i intransitive verb base form

VvVt transitive verb base form

VVOv base form with transitive verb or intransitive verb
VVDi intransitive verb, past tense

VVDt transitive verb, past tense

VVDv transitive or intransitive verb, past tense
VVGi present participle of intransitive verb
VVGt present participle of transitive verb
VVGv present participle of verb having (in)transitive uses
VVNi past participle of intransitive verb

VVNt past participle of transitive verb

VVNv past participle of verb having (in)transitive uses
VVZi intransitive verb, third person singular
VVZt transitive verb, third person singular
VViv transitive or intransitive verb,third person

The word field contains what ever is considered to be a word token.

The lemma field contains the base form(s) of a word token. Typogra-
phical variation is eliminated.

The parse field gives information on syntactic structure. Formtags,
functiontags, and indices are destinguished.

Formtags are comparable to labels assigned to the nodes in a parse
tree. In the annotation, the parse tree is represented by labelled brackets.
Wordlevel, phraselevel, clauselevel, and rootlevel (paragraph, heading, title
etc.) formtags are distinguished. Wordlevel formtags (= wordtags) repre-
sent information related to terminal nodes(= lexical elements). Phrase level
formtags give information on phrase types such as NP, VP, AP, AdjP etc.
Clause level formtags give information on the clause type, such as main
clause, adverbial clause, relative clause etc.

While formtags address surface grammatical properties, functiontags
represent properties of logical grammar. Functiontags indicate the gram-
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matical function of complements, such as subject, direct object, indirect
object, prepositional object, and adjuncts such as place, direction, time,

manner.

Indices specify the relation between surface and deep structure elements.

To give a flavour of the information encoded, the full list of rootlevel,
clauselevel, and phraselevel formtags, and functiontags is presented below.
Comments of the author are surrounded by brackets.

Rootlevel Formtags

0
Oh
0t

Q
I

Ig
Iu

paragraph

heading

title (e.g. of book)

quotation

interpolation (material inserted into a
grammatically and semantically complete structure)
tag question

scientific citation

Clauselevel Formtags

S

Ss
Fa
Fn
Fr
Ff

Fc
Tg
Ti
Tn
Tf
Tb

Tq

W

main clause

quoting clause embedded within quotation
adverbial clause

nominal clause

relative clause

"fused" relative (relative clause lacking an
explicit antecedent, and functioning as a
nominal element)

comparative clause

present participle clause

infinitival clause

past participle clause

"for-to" clause

"bare'" nonfinite clause

infinitival relative clause

reduced ("whiz-deleted") relative clause
(relative clause where relative pronoun and
finite verb have been omitted)

other verbless clause

special "as'" clause

(clause beginning with the subordinating
conjunction or comparative preposition ’as’,
and not being last part of an as-comparison,
and ’as’ is not interpretavble as ’because’,
’while’, or ’when’.)

"with" clause

Phraselevel Formtags

N
v
J

noun phrase
verb group
adjective phrase
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= U

Vo

Vr

Vm
Va
Vs
Vz
Vw
vj
vd
Vi
Vg
Vn
Ve
Vk
Ve
vt
Vu
Vp
Vb
Vx
Vt

Ng
Nv

Ne
Ny
Ni
Nj
Nn
Nu
Na
No
Ns

Np

Jq
Jv

Jx
Jr

adverb phrase
prepositional phrase

determiner phrase

numeral phrase
genitive phrase

APPENDIX D. TAGSETS

operator section of verb group

(i.e. the first part of a split

verb group, e.g. in the case of
subject-auxiliary inversion)

remainder of verb group from which Vo has been
separated
(ie. the second part of a split verb group)

v

<SS <d<

beginning
beginning
beginning
beginning
beginning
beginning
beginning

infinitival

v
v
v

beginning
beginning
beginning

with
with
with
with
with
with
with
v

with
with
with

Ilamll

Ilarell

"Wa.S”

other 3rd-singular verb
”Were"

llbell

past tense

present participle
past participle
modal

V containing emphatic DO
negative V

perfective V

progressive V
passive V
V ending with BE
V lacking main verb

catenative V

"wh-" N

"wh...ever" N

(e.g. ’whoever’, ’whichever direction’)
"I/me" head

"you'" head

"it" head

adjective head
proper name
unit noun head

marked as subject

marked as nonsubject
singular N
plural N

"wh-" J (e.g. ’'how good’)
"wh...ever"
(e.g. ’however bad’, ’no matter how high’)
measured absolute J (e.g. ’10 cm long’)
measured comparative J

(e.g. ’almost two years later than ...’)

J
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Jh postmodified J
(e.g. ’long enough’, ’analoguous to ...’)
Rq "wh-" R
Rv "wh...ever" R
Rx measured absolute R
Rr measured comparative R
Rs adverb conducive to asyndeton
(a phrasal ’as’, ’then’, ’otherwise yet’)
Rw quasi-nominal adverb
(phrase headed by one of the adverbs
’here’, ’there’, ’now’, ’then’, ’anywhere’,
’elsewhere’ , ’somewhere’, ’nowhere’)
Po "of'" phrase
Pb "by'" phrase
Pq "wh-" P
(e.g. ’after how many generations’, ’of which’)
Pv "wh...ever" P (e.g. ’in whichever direction’)
Dq "wh-" D (e.g. ’how many’, ’each of which’)
Dv "wh...ever" D (e.g. ’however much’)
Ds singular D (e.g. ’however much’ Dvs)
Dp plural D (e.g. ’how many’ Dqp)
Ms M headed by a cardinal number
(e.g. ’several thousand’, ’1 billion or more’)
? interrogative clause
* imperative clause
% subjunctive clause
! exclamatory clause or item
" vocative item
+ subordinate conjunct introduced by conjunction

- subordinate conjunct not introduced by conjunction

Q appositional element

& co-ordinate structure acting as first conjunct
within a higher co-ordination
(marked in certain cases only)

WT& co-ordination of words

WT+ conjunct within wordlevel co-ordination
that is introduced by a conjunction

WT- conjunct within wordlevel co-ordination

not introduced by a conjunction

Complement Functiontags

logical subject
logical direct object
surface (and not logical) subject

oOwn o n

surface (and not logical) direct object
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Adjunct

H o 8 b o0
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indirect object

prepositional object

predicate complement of subject
(e.g. He is not interested in

being named ’a full-time director’.)
predicate complement of object

(e.g. he established himself

’as one

of the guiding spirits’)

agent of passive (i.e. by-object)

particle of phrasal verb

(e.g. They slled ’up’ the dean.)

complement of catenative

relative clause having higher clause

as antecedent

(e.g. He left early, ’which surprised me’.)

"guest”

having no grammatical role

within its tagma

Functiontags

place

direction

time

manner or degree
modality
contingency

respect

(phrases beginning with

’in connection with’,

’with respect to’, etc.)

comitative

(with-phrases meaning ‘‘together_with’’)
benefactive

(e.g. she gave me a scarf ’for her son’)
absolute (verbless adverbial clauses)

Susanne Annotation

A01:
A01:
A01:
A01:
A01:
A01:
A01:
A01:
:00101 -
A01:
A01:
A01:
A01:
A01:
A01:
A01:

401

0010a -
0010b

0010c -
0010d -
0010e -
0010f -
0010g -
0010h -

0010j -
00202 -
0020b -
0020c -
0020d -
0020e -
0020f -

YB

AT
NP1s
NNLicb

NN1ic
VVDv
NPD1
AT1
NNin
I0
NP1t
GG
JJ
JJ
NNin

$<$minbrk$>$ - [Oh.Oh]

The the [0[S[Nns:s.
Fulton Fulton [Nms.
County county .Nns]

Grand grand .

Jury jury .Iins:s]

said say [va.vd]

Friday Friday [Nns:t.Nms:t]
an an [Fn:o[Ns:s.
investigation investigation
of of [Po.

Atlanta Atlanta [Ns[G[Nns.Nns]
+$<$apos$>$s - .G]

recent recent
primary primary .
election election .Ns]PolNs:s]
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A01:0020g -  VVDv produced produce [Vd.Vd]

401:0020h -  YIL $<$1dquo$>$ - .

A01:00201 - ATn +no no [Ns:o.

401:0020j - NNiu evidence evidence.

A01:0020k -  YIR +$<$rdquo$>$ -

A01:0020m - CST that that [Fn.

A01:0030a - DDy any any [Wp:s.

A01:0030b -  NN2 irregularities irregularity .Np:s]

A01:0030c -  VVDv took take [va.val

A01:0030d - NNLic place place [Ns:o.Ns:o]Fnl
Ns:0]Fn:o0]Ss]

A01:0030e - YF +. - .0]

Literature

An exhaustive description of the Susanne tagset is presented in [Sampson1995].
The Susanne corpus is freely available.

D.2.2 The Penn Treebank

The second version of the PennTreebank (Treebank II) comprises a mil-
lion words of 1989 Wall Street Journal material. The corpus is annotated
with PoS, and a labelled bracket structure that allows for the extraction
of predicate-argument structure. The PoS labels , as presented in [San-
torini 1995], are listed in section D.2.2. The bracket labels and syntactic
functions are presented in section D.2.2. Labeling examples you’ll find in
section D.2.2. The list of labels, and the examples are taken from [Bies et

al. 1995].
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The Penn Treebank Parts-of-Speech

Command Usage

CC coordinating conjunction
CD cardinal number
DT determiner
EX existential there
Fw foreign word
IN preposition or subordinating conjunction
JJ adjective
JIR comparative adjective
JJS superlative adjective
LS list item marker
MD modal
NN noun, singular or mass
NNS noun, plural
NNP proper noun, singular
NNPS proper noun, plural
PDT predeterminer
POS possessive ending
PRP personal pronoun
PP$ possessive pronoun
RB adverb
RBR comparative adverb
RBS superlative adverb
RP particle
SYM symbol
TO infinitiv marker to
UH interjection
VB verb, base form
VBD verb, past tense
VBG verb, gerund or present participle
VBN verb, past participle
VBP verb, non-3rd person singular, present
VBZ verb, 3rd person singular, present
WDT wh-determiner
WP wh-pronoun
WP$ possessive wh-pronoun
WRB wh-adverb
# Pound sign
$ Dollar sign
sentence final punctuation
, comma
: colon, semi-colon
( left bracket character

right bracket character
straight double quote
left open single quote
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Command Usage

[49
)

»”

left open double quote
right close single quote
right close double quote

The Penn Treebank II Syntactic Structure

Command

I Bracket Labels
I.I Clause-Level Labels

S
SINV

SBAR

SBARQ
SQ

S-CLF

SQ-CLF

I.IT Phrase-Level Labels

RRC

FRAG
VP

NP
ADJP

PP
ADVP
WHNP
WHADVP
WHADJP
WHPP
QP

PRT
UCP
PRN

NX

NAC

INTJ

CONJP

Usage

simple declarative sentence
subject-auxiliary inversion

(not used with questions)

relative or subordinate clause,

incl. indirect questions

wh-question

within SBARQ

(SBARQ consists of wh-element and SQ),
labels yes/no question, and tag question
it-cleft,

e.g. it was Casey who threw the ball
interrogative it-cleft,

e.g. was it Casey who threw the ball

reduced relative clause, complementizer
and finite verb are missing, e.g.

an orangutan foaming at the mouth’,
titles ‘not presently in the collection’
clause fragment

verb phrase

noun phrase

adjective phrase

prepositional phrase

adverbial phrase

wh-noun phrase, e.g. who
wh-adverbial phrase, e.g. why
wh-adjectival phrase,e .g. how cold
wh-prepositional phrase, e.g. on what
quantifier phrase

particle, i.e. separated verb prefix
unlike coordinated phrase
parenthetical

head of a complex noun phrase

not a constituent;

to show scope of certain prenominal
modifiers in a noun phrase
interjection, e.g. Mike, would you ’please’
close the door

conjunction phrase, only used with
adjacent multi-element conjunctions,
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Command

X

IT Function Tags

II.I Text Categories

-HLN

-TTL

-LST

IL.IT Grammatical Functions
-CLF

-NOM

-ADV

-LGS
-PRD

-SBJ
-TPC
-CLR

-DTV

I1.ITT Semantic Roles
-VOC

-DIR
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Usage
e.g. (CONJP not only) ...
(CONJP but rather)

unknown, uncertain, unbracketable

headlines, datelines

titles

list markers,

i.e. mark list items in a text

true clefts, see S-CLF,

and SQ-CLF above

non-NP functioning as NP,

e.g. I do not mind about ’your’
leaving early, what’ I really like
is chocolat

clausal, and nominal adverbials,
e.g. a little bit, you can leave

if you really want to go’

logical subjects in passives
non-VP predicates, i.e. after copula
verbs or in small clauses,

e.g. Mary considers "Peter a fool’
(small clause)

surface subject

topicalized, fronted constituent
closely related, 1.e. constituents
between complement and adjunct,
such as constituents closely
related to the verb,

elements in fixed phrases, and

in support verb constructions
dative PP-object; only with verbs
that undergo dative shift,

e.g. I baked a cake for John,

I baked John a cake

vocative, "Mike’, would you please
close the door
direction, trajectory,
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-LOC

-MNR

-PRP

-TMP

-BNF

-PUT

-EXT

IIT Null Elements

*T*

(NP )

*U*

*9%

*NOT*

Pseudo-Attachment
*ICH*

*PPA*

*RNR*

*EXP*

IV Coindexing

identity index
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Usage

e.g. 'from’ Tokyo 'to’ New York
location

manner

purpose, reason

temporal phrases

benefactive; only with verbs that
undergo dative shift

locative complement of the verb 'put’
extent, spatial extent of an activity,
e.g. she walked ’5 miles’

used for wh-movement,

relative clauses,

tough movement,

parasitic gaps,

and topicalization

used in passive constructions,
control and raising,

reduced relative clauses,
participal clauses and gerunds,
imperatives, and infinitives

the null complementizer,

used in SBAR if wh-element or
that is missing

unit, marks interpreted position
of a unit symbol

placeholder for ellipsed material
anti-placeholder in template gapping,
used when template and copy
in a coordinated structure

are not entirely parallel

to show attachment between
non-adjacent constituents

interprete constituent here,

used for discontinuous dependency
permanent predictable ambiguity, e.g.

145

for structurally unresolvable pp-attachment

right node raising,
indicating shared constituents
expletive

integer following a label tag,
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Command Usage
e.g. (SBAR-1)
reference index integer following a null element,
e.g. (NP *T*-3)
the indices of the null element
and the related constituent
are identical;
null element and related element
must appear within the same sentence

Bracketed Structures

(S (NP-SBJ Casey)
(VP will
(VP throw
(NP the ball))))

(S (WP-SBJ-1 the guide)
(VP was

(VP given
(NP *-1)
(PP-DTV to

(NP Arthur)
(PP by
(NP_LGS Ford))))))

(S (NP-SBJ (NP the person)
(SBAR (WHNP-1 who)
(S (NP-SBJ #T*-1)
(VP threw
(NP the ball)))))
(VP is
(ADJP_PRD very athletic)))

Literature

For the description of the predicate-argument structure see [Marcus et
al. 1994], for the example annotations and all other details see [Bies
et al. 1995]. More information on the Treebank IT can be found via
http:/www.ldc.upenn.edu

D.2.3 The Constraint Grammar Tagset

The Constraint Grammar tagset comprises PoS-tags , and structural tags.
PoS-tags give information on syntactic category and on morphosyntactic
features related to specific syntactic categories. Additionally there are some
other tags such as $2-NL representing a sequence of two or more newlines,
and “*’ indicating an upper case in words. Structural tags represent the
syntactic function of a word, such as subject, object etc. The crucial thing



D.2. TAGSETS FOR ENGLISH TEXT CORPORA 147

to know is that in Constraint Grammar all information, even structural
one, is expressed at word level.
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The Constraint Grammar PoS-Tagset

Command
A

ABBR
ADV

CC

CS

DET
INFMARK>
INTERJ

N
NEG-PART
NUM

PCP1
PCP2
PREP
PRON

v

Features for abbreviations

<Title>
GEN
NOM
PL

SG
SG/PL

Features for adjectives

<Attr>
<DER:al>
<DER:ble>
<DER:ic>
<DER:ive>
<DER:less>
<DER:like>
<DER:ward>
<DER:wise>
<Nominal>
<Pred>

ABS

CMP

SUP

Features for adverbs
<**CLB>

<DER:bly>
<DER:ed>
<DER:ing>
<DER:ly>
<DER:ward>

Usage

adjective

abbreviation

adverb

coordinating conjunction
subordinating conjunction
determiner

infinitive marker such as ‘to’
interjection

noun

negative particle such as ‘not’
numeral

participial with -ing form
participial with -ed/-en form
preposition

pronoun

verb

title such as “*dr’ for ‘Doctor’
genitive

nominative

plural

singular

singular or plural

attributive

derived adjective in -al
derived adjective in -ble
derived adjective in -ic
derived adjective in -ive
derived adjective in -less
derived adjective in -like
derived adjective in -ward
derived adjective in -wise
likely NP head
predicative

absolute form
comparative form
superlative form

clause boundary as it is introduced

by the adverb why
derived adverb in -bly
derived adverb in -ed
derived adverb in -ing
derived adverb in -ly
derived adverb in -ward
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<DER:wards>

<DER:wise>
ABS

CMP

SUP

WH

Features for determiners

<**CLB>

<Def>
<Genord>
<Indef>
<Quant>
ABS

ART
CENTRAL
CMP
DEM

GEN

NEG

PL

POST
PRE

SG

SG/PL
SuUpP

WH

Features fOI' nouns
<DER:bility>

<DER:ble>
<DER:er>
<DER:ing>
<DER:ness>
<DER:or>
<DER:ship>
<NRare>
<Proper>
<-Indef>

<Title>
GEN
NOM
PL

SG
SG/PL

Features for numerals

<Fraction>
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Usage

derived adverb in -wards
derived adverb in -wise
absolute form
comparative form
superlative form

wh-adverb

clause boundary as it is introduced
by which

definite

general ordinal such as next
indefinite such as an
quantifier such as some
absolute form such as much
article

central determiner
comparative form
demonstrative determiner
genitive

negative form

plural as required from few
postdeterminer e.g. much
predeterminer e.g. all
singular

singular or plural

superlative form
wh-determiner such as whose

derived noun in -bility
derived noun in -ble

derived noun in -er

derived noun in -ing

derived noun in -ness

derived noun in -or

derived noun in -ship

word only rarely used as a noun
proper

noun with no indefinite article
such as furniture

title e.g. *professor

genitive case

nominative case

plural

singular

singular or plural

fraction e.g. two-thirds
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Command
CARD
ORD

SG

PL

Features for pronouns
<**CLB>
<Comp-Pron>
<Generic>
<Interr>
<NonMod>
<Quant>
<Refl>
<Rel>

ABS

ACC

CMP

DEM

FEM

GEN
INDEP
MASC

NEG

NOM

PERS

PL

PL1

PL2

PL3
RECIPR
SG

SG/PL

SG1

SG2
SG2/PL2
SG3

SUP

WH
Features for prepositions
<CompPP>
Features for verbs
<Arch>
<DER:ate>
<Rare>
<Vcog>
<SV>
<SVO>
<SVOO>

APPENDIX D. TAGSETS

Usage

cardinal numeral
ordinal numeral
singular e.g. one-eighth
plural e.g. three-eighths

clause boundary e.g. introduced to who
compound pronoun e.g. something
generic pronoun e.g. one’s
interrogative

pronoun with no DET or premodifier
quantitative pronoun

reflexive pronoun

relative pronoun

absolute form

accusative (objective) case
comparative form

demonstrative pronoun

feminine

genitive

independent genitive form
masculine

negative form such as none
nominative

personal pronoun

plural

1st person plural

2nd person plural

3rd person plural

reciprocal pronoun e.g. each other
singular

singular or plural

1st person singular

2nd person singular

2nd person singular or plural

3rd person singular

superlative form

wh-pronoun

multi-word preposition e.g. in spite of

archaic form

derived verb in -ate

word only rarely used as a verb
verb that takes a that-clause
intransitive

monotransitive

ditransitive
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<SVC/A>
<SVC/N>

<down/SVC/ A>
<out/SVC/A>
<out/SVC/N>
<up/SVC/A>
<up/SVC/N>
<SVOC/A>
<SVOC/N>
<as/SVOC/A>
<for/SVOC/A>
<into/SVOC/A>
-SG1,3

-SG3

AUXMOD

IMP

INF

NEG

PAST

PRES

SG1

SG1,3

SG2

SG3
SUBJUNCTIVE
VFIN
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Usage

copular with adjective complement

copular with noun complement

such as become

copular with A, phrasal verb e.g. fall down
copular with A, phrasal verb e.g. turn out
copular with N, phrasal verb e.g. turn out
copular with A, phrasal verb e.g. stand up
copular with N, phrasal verb e.g. end up
complex trans. with adjective complement
complex trans.
complex trans.
complex trans.
complex trans.
other than 1st or 3rd person sg.
other than 3rd person sg.
modal auxiliary

imperative

infinitive

negative

past tense

present tense

1st person sg.

1st or 3rd person sg.

2nd person sg.

3rd person sg.

subjunctive

finite form

with noun complement

with A, prepositional verb
with A, prepositional verb
with A, prepositional verb

151
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Constraint Grammar Syntactic Tags

Command Usage

@+FAUXV Finite Auxiliary Predicator
@-FAUXV Nonfinite Auxiliary Predicator
@+FMAINV Finite Main Predicator
@-FMAINV Nonfinite Main Predicator
@NPHR Stray NP

@SUBJ Subject

@F-SUBJ Formal Subject

@OBJ Object

@I-OBJ Indirect Object
@PCOMPL-S Subject Complement
@PCOMPL-O Object Complement
@ADVL Adverbial

@APP Apposition

@N Title

@DN> Determiner

@NN> Premodifying Noun

@AN> Premodifying Adjective
QQN> Premodifying Quantifier
QGN> Premodifying Genitive
@AD-A> Premodifying Ad-Adjective
@<NOM-OF Postmodifying Of

@<NOM-FMAINV

Postmodifying Nonfinite Verb

@<AD-A Postmodifying Ad-Adjective

@<NOM Other Postmodifier

@INFMARK> Infinitive Marker

@<P-FMAINV Nonfinite Verb as Complement of Preposition

Q<P Other Complement of Preposition

@CC Coordinator

@CS Subordinator

@O-ADVL Object Adverbial

QNEG Negative particle "not”

@DUMMY A word without a syntactic function,
*the = The

Sample Constraint Grammar Analysis

nCki>"
"i" <*> <NonMod> PRON PERS NOM SG1 SUBJ @SUBJ
"<see>"
"see" <as/SVOC/A> <SV0O> <SV> <InfComp> V PRES -SG3 VFIN Q@+FMAINV
"<a>"
"a'" <Indef> DET CENTRAL ART SG @DN>
"<bird>"
"bird" N NOM SG @©@OBJ
"<g. >
Literature

For a comprehensive introduction to ENGCG see [Karlsson et al 1995]. The
material can be obtained by sending an emty email to engcgi@ling.helsinki.fi.
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D.3 Tagsets for German Text Corpora

D.3.1 The Stuttgart-Tubingen Tagset

The Stuttgart-Tibingen tagset is a mere PoS-tagset. It comes in two ver-
sions, a small and a large one. In the large tagset PoS information is
augmented by morphlogical information such as features for person, num-
ber, gender, case, tense, mode, comparation, and inflection type. In the
following the inventary of the small version of the tagset is presented:
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Command  Usage

ADJA attributival adjektiv

ADJD adverbial or predicative adjective

ADV adverb

APPR preposition ; circumposition left
APPRART preposition with incorporated article
APPO postposition

APZR circumposition right

ART definite or indefinite article

CARD cardinal

FM foreign material

ITJ interjection

KOUI subordinating conjunction with zu and infinitive
KOUS subordinating conjunction with sentence
KON coordinating conjunction

KOKOM comaration particle, without sentence
NN common noun

NE proper noun Hans*Hamburg*HSV

PDS substitutive demonstrative pronoun
PDAT attributive demonstrative pronoun

PIS substitutive indefinit pronoun

PIAT attributive indefinit pronoun

PIDAT attributive indefinit pronoun mit Determiner
PPER irreflexive personal pronoun

PPOSS substitutive possessive pronoun
PPOSAT attributive possessive pronoun

PRELS substitutive relative pronoun

PRELAT attributive relative pronoun

PRF reflexive personal pronoun

PWS substitutive interrogativpronoun

PWAT attributive interrogativpronoun

PWAV adverbial interrogative- or relative pronoun
PROAV pronominal adverb

PTKZU ”zu” before infinitive

PTKNEG negation partikel

PTKVZ abgetrennter verb prefix

PTKANT Antwortpartikel

PTKA partikel occurring with adjective or adverb
TRUNC lexical ellipsis

VVFIN finite verb, main

VVIMP imperative, main

VVINF infinitive, main

VVIZU infinitive with ”zu”, main

VVPP past partiziple, main

VAFIN finite verb, aux

VAIMP imperative, aux

VAINF infinitive, aux
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Command
VAPP
VMFIN
VMINF
VMPP
XY

$’
$.
$(

Usage

past artiziple, aux

finite verb, modal

infinitive, modal

past partiziple, modal
non-word, Sonderzeichen
comma
sentence final punctation
sentence internal punctuation

Annotation Example

M"ogen VMFIN

Puristen NN
aller PIDAT
Musikbereiche NN
auch ADV

die ART

Nase NN
r''umpfen VVINF
, $,

die ART
Zukunft NN

der ART

Musik NN

liegt VVFIN

f"ur APPR

viele PIDAT
junge  ADJA
Komponisten NN
im APPRART
Crossover-Stil NN
. $.

Sie PPER

gehen  VVFIN
gewagte ADJA
Verbindungen
und KON
Risiken NN
ein PTKVZ
, $,

versuchen

ihre PPOSAT

NN

VVFIN

M"oglichkeiten NN

auszureizen

$.

Literature

VVIZU

[Thielen and Schiller 1995]
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Appendix E

Optimization Theory,
Wild-West Style

E.1

Introduction

Here we will discuss constrained optimization using Lagrange multiplyers.

This requires that we first go through the following necessary prerequisites:

R, the set of real numbers: 0, —1,42, %, V2,em, ...
Intervals: [—1, 0], (Ti, V2),[r,00), ...

Sequences and limits in R: e = lim,—oo(1 + %)”
n factors
——
R*=Rx---xR.
Functions f(z) from Rto R (f: R+~ R): z+ 5,22 sinz, e”.
Sequences and limits of functions in R — R: limg_ ., f(x).

Derivatives: % = limp o M

Functions f(z1,...,2,) from R® to R (f : R* — R): 22 4+ y* + 22,
Partial derivatives: %%l. Gradients: Vf = (%, R aaxfn)'
Optimization in one dimension:

xlgi‘ang f(z)

The solutions: Stationary points and boundary points.
The zeros of the derivative: % =0.

Optimization in several dimensions:

flza, ... 2n)

max
(1,...,2n)EACR"™

The zeros of the partial derivatives: Vi% = 0. Or, equivalently, the
zeros of the gradient: Vf=0=(0,...,0).

157
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e Constrained optimization in several dimensions:

max xr P i
(21,00 )EACR™ H(@1,sn)

ge(z1,...,2p) = 0 fork=1,...,m

e Lagrange multiplyers: V[f(21,...,2n) =Y pey Mgr(21,...,2,)] = 0.

In addition to this, we need to recapitulate numerical analysis to see how
to solve the resulting equations. Since this is clearly impossible within the
given time, we will start from the end and work our way backwards.

E.2 Constrained Optimization in R"
The basic problem that we want to solve is the following:

max xr P i
(21,...,0n)EACR f@1,sn)

ge(z1,...,2n) = 0 fork=1,...,m

This means that we want to maximize the real-valued object function f of
n real variables z1,...,z, where the vector x = (&1,...,2,) is restric-
ted to the subset A of R™, while observing m constraints of the form

ge(z1, ..., 2,) = 0.
Example: A typical example would be estimating the parame-
ters v, pjr,aj € [0,1] @ jk=1,...,N;1l=1,...,Mofa
hidden Markov model with N states and M signals.

max P(0O)
(v1,..,uN,P11,..,PNN,Q11,..,anp )E[0,1]™

N
g vj = 1
ji=1

1 forj=1,...,N

3
o
[l

1 forj=1,...,N

Q
.
l

Here the probability P(O) of the observed training data O is
the object function, and the requirement that the various sets
of probabilities sum to 1 constitutes the set of constraints. We
haven=N+ N -N+ N -M = N(N + M + 1) variables z; and
m=1+4+ N+ N =2N + 1 constraints.

Let us simplify this problem slightly to the case where we we have
no constraints, i.e., where m = 0. As we shall soon see, the points of
interest would then under suitable conditions be those where V f(x) = 0.
Intuitively, this can be understood as follows: Vf(x) is a vector in R"
indicating

1. the direction in point x in which f(x) grows the most,

2. and how fast it grows in this direction.
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If x is a maximum, f(x) doesn’t grow at all in any direction, and V f(x)
should thus be zero. Unfortunately, this is also true for a minimum, and
for other so-called stationary points. In addition to this, f(x) may not be
particularly well-behaved, and may not allow us to form V f(x), i.e., this
quantity may be undefined. We’ll get back to this later. For the time being,
maximizing f(x) will involve inspecting the points where V f(x) = 0.

We have however not taken the constraints gz(x) = 0 into account. A
clever way of doing this, due to the famous French mathematician Joseph
Louis Lagrange (1736-1813), is to introduce so-called Lagrange multiplyers.
Note that

{ maxxeacrn f(x) }@{ maxxeac g [f(%) = 2252 Argi(x)] }
gr(x) = 0 fork=1...,m gr(x) = 0 fork=1,...,m

for any choice of real numbers A since gr(x) = 0. It turns out that the
points of interest when solving the constrained optimizations problem are,
again under suitable conditions, precisely the points where

VfX— Zl:l)\kkx =0 fo: ;n:lAkka
{gk[(x() ):ZO: for]fz(l),]...,m }Q{ gk()(()):z%) forkg:(l,?..,m}

The parameters Ay, ..., A, are determined by the new set of equations.
Compared with the unconstrained optimization problem, we have increased
the set of unknown variables from n to n + m by introducing these para-
meters, but we have also added m equations {gx(x) = 0: k= 1,...,m}.
We have thus given the system m extra degrees of freedom, but also added
m extra constraints, a net change of zero degrees of freedom.

Example: In the example of estimating the parameters v;, p;z, a1 €
[0,1] : 5,k=1,...,N;1=1,...,M of a hidden Markov mo-

del with N states and M signals, this amounts to the following

set of equations (P stands for P(O)):

opP
— = X forjyj=1,....N
8Uj
opP
3 = Ajy1 foryj=1,...,N;k=1,...,N
Pjk
opP
—— = Antjp1 forj=1,....N;Il=1,....M
6aj1
N
du = |
ji=1
N
Epjk = 1 forj=1,...,N
k=1
M
lajg = 1 forj=1,...,N
=1

By multiplying each equation by the appropriate parameter,
and summing over the appropriate index (j in the first set of
equations, k in the second one, and [ in the third one), we can
find the values of A1, ..., Aap41 that satisfy the constraints:
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N
opP .
ijka— = )\]+1 fOrjzl,...,N
k=1 p]k
M
opP .
Zaﬂ&T = )\N+j+1 fOI'jII,...,N
=1 Jl
Thus
,U].E
S duy .
v; = 721\, P fory=1,...,N
ji=1 ]3’01'
P
Pikap ,
pik = ﬁ forj=1,....,.N; k=1,...,N
Ek‘:lp.]kapjk
P
Ailga
4 = ———29 _ forj=1,... N;l=1,...M

ST
=1 ]laaﬂ

It is not easy to prove that the points satisfying this new set of equations
are exactly the set of interesting points for the constrained optimization
problem, and we will refrain from attempting the proof. We instead offer
the following intuitive explanation, based on reasoning about surfaces and
curves in R™:

Vf(x), Vf for short, is a normal to the surface {x € R" : f(x) = C},
f = C for short. Similarly, Vg is a normal to the surface g = 0. Any
vector normal to the intersection curve of the surfaces g1 = 0 and g2 = 0
can be written as A1Vg; + A2Vgs, where A1 and Ay are real numbers.
Generalizing, any vector normal to the intersection curve of the surfaces
{9» =0:k=1,...,m} can be written as Y ;- AxVgg, where A1,..., Ay,
are real numbers.

Now comes the crucial bit: As we vary C, the surface f = C' will hope-
fully cut the intersection curve of the surfaces {gy = 0 : k£ = 1,...,m}
at some point(s) for some value(s) of C. Otherwise, the constrained op-
timization problem has no solutions. We want to maximize C'. This will
under suitable conditions happen when the surface f = C just barely tou-
ches this intersection curve. This in turn will happen when a normal of
the surface f = C' is also a normal to the intersection curve of the sur-
faces {gr = 0: %k = 1,...,m}. This means that Vf is a normal both to
the surface f = C' and to the intersection curve. Since any normal to the
intersection curve can be written as y ,, Ay Vg, this will happen when

VI=25m MV

E.3 Numerical Analysis

This is not the only thing there is to know about numerical analysis.

Assume that we wish to calculate \/5, but that some nerd has knicked
our belt-strapped scientific calculator, and left us with a useless economic
calculator which only lends itself to the four basic arithmetic operations
addition, subtraction, multiplication and division (4, —, x, and =), and,
most importantly, percentage calculations (%). We then need to calculate
a numerical approximation of /2 using only these four basic arithmetic
operations.
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We realize that ¢ = /2 must satisfy
2 = 2 and z > 0. (E.1)

and that this uniquely determines x.

The basic idea is to come up with a recurrence equation zp41 = f()
that only involves addition, subtraction, multiplication and division, and
that will allow us to calculate a better next estimate 41 of  from the
current one zy.

A first attempt might be to note that

2
r = =
=
and simply let f(z) = 2/2. Thus
T4+l = a
Unfortunately, we see that
2 2
LT+l = — = 3 = Tk-1
Lk Tr—1

Thus, we won’t get any closer to the value v/2 this way. By instead adding
x to both sides of Equation E.1, we find that

2 1
22+z=2+z or z(z+1)=24+2 or z= t or z=1+
z+1 z+1
Thus
1
= 1
Tr41 +$k+1
Let 1 = 1 and note that /2 &~ 1.41421.
zy = 1 = 1.00000
Ty = % = 1.50000
r3 = g = 1.40000
rs = i 9~ 141667
Ty = % 1.41379
Tg = % 1.41428

We see to our joy that this is rapidly approaching v/2.
But why is this? We have that

4+4mk+x%—2—4rk—2rz

2 2
2202 = [(ZEEy2 9 = =
ata-2] = [CGEEP -2 = | Y |
1 2

We also note that z > 1 = 441 = 1 + -’l»'k1‘|'1 > 1. So if we start with
z1 = 1, then ;L‘k>1for/c:2,3,...Thismeansthatm<ﬁ:%.
Thus

1 1 1 1
ot —2] < gled-20 < (PP lain—2] < (PFlai-2l = (P}
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Finally noting that l‘z+1 -2 = (Zp41 — \/5) (xpy1 + \/5), we see that

1
| 2e41 — V2| < (Z)k

v < (l)k#
Tpy1+ V2 47 142

and that z; approaches /2 with geometric speed as k tends to infinity.

Example: In the example of estimating the parameters v;, p;z, a1 €
0,1 : 5,k=1,...,N;1=1,..., M of a hidden Markov mo-

del with N states and M signals, we arrived at the following set

of equations:

v: 2P
J duy .
Uj = N76P fOI'jzl,...,N
Zj:l”]ﬁj
pip 2
J% dp i .
Pik = =N 3p fory=1,...,N; k=1,...
Ek‘:lpjkapjk
a; 22
.73aj1 .
TS T forj=1,....N;Il=1
Z[:la]laajl

N

3

M

gy

From this we can construct a set of recurrence equations with
the nice property that either the next iteration of parameters
will increase the value of P(O) (the probability of the training
data) or the value of the parameters will be the same. Since we
have a lot of subscript indices, we will let & denote zp41 and z

denote z,.
9P
v: 22
~ J duy .
Uj = W fOI'jzl,...,N
ijﬂyavj
. OP
5 _ Pikgpy for i =1 N:k=1 N
Pjk N e J=4.. ) — Ly
Zk:1pjkapjk
a; 2P
~ ]6aj1 .
aj; = ————5 forj=1,... N;Il=1....M

S
=1 ]laaﬂ
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